微分積分:Calculus

python

有限体積法の概要と関連アルゴリズム及び実装例

有限体積法の概要 有限体積法(Finite Volume Method、FVM)は、偏微分方程式を解くための数値解法の一つであり、物理的な領域を有限個のセルに分割し、各セル内で方程式を平均化して離散化すること...
python

有限要素法の概要とアルゴリズム及び実装例

有限要素法の概要 有限要素法(Finite Element Method、FEM)は、物体や構造物の振る舞いや応力解析を数値的に解析するための手法であり、複雑な構造や物体に対する力や荷重の影響を詳細にモデル化...
アルゴリズム:Algorithms

重複のあるグループ正則化の概要と実装例について

概要 重複のあるグループ正則化(Overlapping Group Lasso)は、機械学習や統計モデリングにおいて、特徴選択やモデルの係数の推定に使用される正則化手法の一種であり、通常のグループ正則化と...
python

方策勾配法の概要とアルゴリズム及び実装例について

方策勾配法について 方策勾配法(Policy Gradient Methods)は、強化学習の一種で、特に方策(ポリシー)の最適化に焦点を当てる手法となる。方策は、エージェントが状態に対してどのような行動を選択すべ...
python

Gelman-Rubin統計量の概要と関連アルゴリズム及び実装例について

Gelman-Rubin統計量の概要 Gelman-Rubin統計量(またはGelman-Rubin診断、Gelman-Rubin統計テスト)は、マルコフ連鎖モンテカルロ(MCMC)サンプリング法の収束診断のための統計的...
幾何学:Geometry

交差エントロピー損失について

交差エントロピー損失について 交差エントロピー損失(Cross-Entropy Loss)は、機械学習や深層学習において、分類タスクのモデルの性能を評価し、最適化するために使用される一般的な損失関数の一つであり、特に、二...
python

Q-学習の概要とアルゴリズム及び実装例について

Q-学習について Q-学習(Q-Learning)は、強化学習の一種で、エージェントが未知の環境を探索しながら最適な行動を学習するためのアルゴリズムとなる。Q-学習は、エージェントが行動価値関数(Q関数)を学習し、...
アルゴリズム:Algorithms

ガウス・エルミート積分の概要とアルゴリズム及び実装について

ガウス・エルミート積分について ガウス・エルミート積分(Gaussian-Hermite Integration)は、数値積分の手法の1つで、特に確率密度関数がガウス分布(正規分布)であるような確率論的な問題や、量子力学...
python

ニュートン法の概要とアルゴリズム及び実装について

ニュートン法について ニュートン法(Newton's method)は、非線形方程式や関数の数値的な解を求めるための反復的な最適化アルゴリズムの一つであり、主に方程式の根を求めるために使用され、連続的な関数の極小値や極大...
微分積分:Calculus

勾配法の概要とアルゴリズムおよび実装例について

勾配法(Gradient Descent)について 勾配法は機械学習や最適化アルゴリズムで広く使用される手法の一つであり、そのの主な目的は、関数の最小値(または最大値)を見つけるため...
タイトルとURLをコピーしました