機械学習:Machine Learning

オンライン学習

保護中: 強化学習の新展開(1)-リスク指標を用いた強化学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのためのリスク考慮型強化学習法でのさまざまなアプローチ(正規過程TD学習、RDPS法)と実装(モンテカルロ法、解析的手法)
オンライン学習

保護中: 部分観測マルコフ決定過程(2)POMDPのプランニング

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための強化学習、部分観測マルコフ決定過程のプランニング方法による最適方策の獲得
オンライン学習

保護中: 部分観測マルコフ決定過程(1)POMDPと信念MDPについて

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される部分観測マルコフ決定過程(POMDP)を用いたよりフレキシブルな強化学習、信念MDP
オンライン学習

保護中: 関数近似を用いた強化学習(3)- 方策関数の関数近似

このコンテンツはパスワードで保護されています。閲覧するには以下にパスワードを入力してください。 パスワード:
オンライン学習

保護中: 関数近似を用いた強化学習(2)- 価値関数の関数近似(オンライン学習の場合)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される膨大な状態数での強化学習に対応する関数近似オンライン手法の理論(勾配TD学習法、最小二乗法に基づく最小二乗TD学習(LSTD)法、GTD2法)とLASSOによる正則化
強化学習

保護中: 関数近似を用いた強化学習(1) – 価値関数の関数近似(バッチ学習の場合)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための強化学習での膨大な状態数に対応するための価値関数のバッチ学習のケースでの関数近似
推論技術:inference Technology

保護中: 時系列・空間データのモデリング(1)(動的線形モデル)

動的線形モデルを中心とした時間・空間モデルのベイズモデル化とMCMCによる評価
IOT技術:IOT Technology

保護中: モデルベース型の強化学習(スパースサンプリング、UCT、モンテカルロ探索木)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモデルベース型の強化学習(スパースサンプリング、UCT、モンテカルロ探索木)
アルゴリズム:Algorithms

機械学習プロフェッショナルシリーズ ベイズ深層学習 読書メモ

機械学習プロフェッショナルシリーズ ベイズ深層学習 読書メモ 機械学習プロフェッショナルシリーズ 「ベイズ深層学習 」より読書メモを記述する 前書き ベイズ深層学習の目指すところ 深層学習の課題 大...
グラフ理論

構造学習

構造学習について データが持つ構造を学習することは、そのデータが何であるかという解釈を行う上で重要なものとなる。構造学習の中で最もシンプルなもは、階層的なクラスタリングであり、決定木による学習の基本的な機械学習アルゴリズム...
タイトルとURLをコピーしました