数学:Mathematics

ベイズ推定

確率論入門 読書メモ

確率論入門 読書メモ 確率論入門より 「確率をめぐる数学的考察は、賭け事に関してパスカルとフェルマが交わした往復書簡に始まると言われる。組み合わせの概念に基づく古典的確率論は、20世紀になるとボレルやコルモゴ...
アルゴリズム:Algorithms

保護中: サポートベクトルマシンでの分割法(1) SMOアルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるサポートベクトルマシンでの分割法(SMOアルゴリズム)を用いた効率化
IOT技術:IOT Technology

保護中: 時系列データでの粒子フィルタの実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される時系列データ分析のためのパーティクルフィルタを用いたデータの同化とカルマンフィルタ、パーティクルフィルタ(逐次モンテカルロ法)、マルコフ連鎖モンテカルロ法(MCMC)の比較
確率・統計:Probability and Statistics

世界を変えた確率と統計のカラクリ134話 読書メモ

世界を変えた確率と統計のカラクリ134話 読書メモ 世界を変えた確率と統計のカラクリ134話より。 岩沢 宏和 「大数学者二人の往復書簡から始まった確率論と「政治算術」として始まった統計学。それらは、どのよう...
Symbolic Logic

保護中: サポートベクトルマシンでの最適化概論:最適性条件と汎用的解法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用されるサポートベクトルマシンでの最適性条件(強双対とKKT)と汎用的解法(アクティブセットと内点法)
IOT技術:IOT Technology

保護中: Rによる状態空間モデリング-dlmとKFASを用いて(3) KFASによる解析

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される時系列データ解析、RのKFASを用いた実データでの時系列解析例(正規分布、ポアソン分布、カルマンフィルタ、1階差分モデル、2階差分モデル)
アルゴリズム:Algorithms

リアルなSimCityの夢

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用されるシミュレーションと機械学習技術の融合、エミュレーションと機械学習を用いた現実世界へのSimCityの適用
微分積分:Calculus

機械学習プロフェッショナルシリーズ 確率的最適化 読書メモ

サマリー 機械学習での確率的最適化とは、ランダムなサンプルを用いた最適化問題の解法のことを指すものとなる。通常の最適化問題では、目的関数を最小化するために、全ての訓練データを使用して最適化する必要があるが、データセットが大規...
アルゴリズム:Algorithms

保護中: カーネル関数

サポートベクトルマシンにおける一般的なカーネル関数(線形カーネル,多項式カーネル,RBFカーネル)と確率的データ、文字列データ、グラフ型データでのカーネル関数(p-スペクトラムカーネル,全部分列カーネル,ギャップ重み付きカーネル,フィッシャーカーネル,グラフラプラシアン,通勤時間カーネル,拡散カーネル,正則化ラプラシアン,ランダムウォーク)
R

保護中: Rによる状態空間モデリング-dlmとKFASを用いて(2) dlmによる季節調整モデル

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される時系列データの解析、Rのdlmを用いた実データでの季節変整時系列モデルの解析
タイトルとURLをコピーしました