2024-09

python

価値勾配法の概要とアルゴリズム及び実装例について

価値勾配法の概要 価値勾配法(Value Gradients)は、強化学習や最適化の文脈で使用される手法の一つであり、状態価値やアクション価値といった価値関数に基づいて勾配を計算し、その勾配を使って方策の最適化を行...
python

HIN2Vec-GANの概要とアルゴリズム及び実装例

HIN2Vec-GANの概要 HIN2Vec-GANは、グラフ上の関係を学習するために使われる技術の一つで、具体的には、異種情報ネットワーク(Heterogeneous Information Network,...
python

サンプルベースMPC(Sample-Based MPC)の概要とアルゴリズム及び実装例について

サンプルベースMPC(Sample-Based MPC)の概要 サンプルベースMPC(Sample-Based Model Predictive Control)は、モデル予測制御(MPC)の一種で、システムの未来の挙...
python

Meta-Learnersを用いた因果推論の概要とアルゴリズム及び実装例

  Meta-Learnersを用いた因果推論の概要 Meta-Learnersを用いた因果推論は、機械学習モデルを用いて因果関係を特定し、推論するためのアプローチを改善する方法の一つであり、因果推論は、...
python

予測制約法(Predictive Control with Constraints)の概要とアルゴリズム及び実装例

予測制約法(Predictive Control with Constraints)の概要 予測制約法(Predictive Control with Constraints)は、制約条件を満たしながらシステムの将来の挙動...
Symbolic Logic

Rule Based Reasoning , Programming and Applications

Rule Based Reasoning , Programming and Applications Rule Based Reasoning , Programming and Applications...
数学:Mathematics

確率と不確実性とランダム性の関係

確率について 確率とは、ある事象が起こる可能性の程度を数値化したものであり、具体的には、ある事象が発生する確率は、その事象が起こる場合の数(好ましい結果)を、全体の場合の数(可能な全ての結果)で割ることによって計...
python

カーリー・ウィンドウ探索(Curiosity-Driven Exploration)の概要とアルゴリズム及び実装例について

カーリー・ウィンドウ探索(Curiosity-Driven Exploration)の概要 カーリー・ウィンドウ探索(Curiosity-Driven Exploration)は、強化学習においてエージェントが興味...
python

HIN2Vecの概要とアルゴリズム及び実装例

HIN2Vecの概要 HIN2Vec(Heterogeneous Information Network Embedding)は、異種情報ネットワークをベクトル空間に埋め込む手法で、異種情報ネットワークは、複数...
アルゴリズム:Algorithms

数え上げ問題の概要とアルゴリズム及び実装例について

数え上げ問題の概要 数え上げ問題(counting problem)は、組み合わせ論や確率論などの数学の分野で頻繁に取り組まれる問題の一つであり、これは、ある条件を満たす対象の総数を数え上げる問題として、しばしば組み...
タイトルとURLをコピーしました