ニュートン法

アルゴリズム:Algorithms

保護中: 機械学習におけるラグランジュ関数を用いた最適化(1)双対上昇法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習におけるラグランジュ関数を用いた最適化(最急上昇法、ニュートン法、双対上昇法、非線形な等式制約付き最適化問題、閉真凸関数f、μ-強凸関数、共役関数、最急降下法、勾配射影法、線形不等式制約付き最適化問題、双対分解、交互方向乗数法、正則化学習問題)
アルゴリズム:Algorithms

保護中: トンプソン抽出、ロジスティック回帰モデル上の線形バンディット問題

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるトンプソン抽出、ロジスティック回帰モデル上の線形バンディット問題(トンプソン抽出、最尤推定、ラプラス近似、アルゴリズム、ニュートン法、負の対数事後確率、勾配ベクトル、ヘッセ行列、ラプラス近似、ベイズ統計、一般化線形モデル、Lin-UCB方策、リグレット上界)
アルゴリズム:Algorithms

保護中: 機械学習における連続最適化での信頼領域法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習における連続最適化での信頼領域法(ドッグレッグ法、ノルム制約、モデル関数最適化、部分問題の近似解、修正ニュートン法、探索方向、大域的最適解、ニュートン法、最急降下法、信頼領域半径、信頼領域、降下方向、ステップ幅)
アルゴリズム:Algorithms

保護中: 統計数学理論によるブースティング

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるブースティング(一般化線型モデル、修正ニュートン法、対数尤度、重み付き最小2乗法、ブースティング、座標降下法、反復重み付け最小2乗法、iteratively reweighted least square method、IRLS method、重み付き経験判別誤差、パラメータ更新則、へシアン行列、補正ニュートン法、modified Newton method、ニュートン法、Newton method、リンク関数、ロジスティック損失、logistic loss、ブースティング・アルゴリズム、ロジットブースト、指数損失、凸マージン損失、アダブースト、弱仮説、経験マージン損失、非線形最適化)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての準ニュートン法(1) アルゴリズムの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての準ニュートン法(BFGS公式、ラグランジュ乗数、最適性条件、凸最適化問題、KLダイバージェンス最小化、等式制約付き最適化問題、DFG公式、正定値行列、幾何構造、セカント条件、準ニュートン法の更新則、ヘッセ行列、最適化アルゴリズム、探索方向、ニュートン法)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての共役勾配法と非線形共役勾配法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての共役勾配法と非線形共役勾配法(モーメント法、非線形共役勾配法、探索方向、慣性項、Polak-Ribiere法、直線探索、ウルフ条件、Dai-Yuan法、強ウルフ条件、Fletcher-Reeves法、大域的収束性、ニュートン法、急速降下法、ヘッセ行列、凸2次関数、共役勾配法、最小固有値、最大固有値、アフィン部分空間、共役方向法、座標降下法)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としてのガウス・ニュートン法と自然勾配法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としてのガウス・ニュートン法と自然勾配法(シャーマン・モリソンの公式、1ランク更新、フィッシャー情報行列、正則条件、推定誤差、オンライン学習、自然勾配法、ニュートン法、探索方向、最急降下法、統計的漸近理論、パラメータ空間、幾何構造、ヘッセ行列、正定値性、ヘリンジャー距離、シュワルツの不等式、ユークリッド距離、統計学、レーベンバーグ・マーカート法、ガウス・ニュートン法、ウルフ条件)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としてのニュートン法と修正ニュートン法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための機械学習の連続最適化としてのニュートン法と修正ニュートン法(コレスキー分解、正定値行列、ヘッセ行列、ニュートン方向、探索方向、テイラー展開)
アルゴリズム:Algorithms

保護中: 正定値行列の情報幾何(3)計算の手順と曲率

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される正定値行列の情報幾何としての計算の手順と曲率(双対ギャップ、アフィン微分幾何、ヘッセ幾何、ガウシアングラフィカルモデル、偏微分方程式論、確率論、線形計画問題、正定値対称行列、半正定値計画問題、予測子・修正子法、多項式時間アルゴリズム、幾何情報的量、ニュートン法、中心曲線、内点法、主内点法、双対内点法、主双対内点法、近似最適解、アフィン空間、ポテンシャル関数)
アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 尤度に基づく方策(UCBとMED方策)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 尤度に基づくUCB方策とMED方策(MED方策(Indexed Mimimum Empirical Divergence policy)、KL-UCB方策、DMED方策、リグレット上界、ベルヌーイ分布、大偏差原理、Deterministic Minimum Empirical Divergence policy、ニュートン法、KLダイバージェンス、ビンスカーの不等式、ヘフディングの不等式、チェルノフ・ヘフディングの不等式、Upper Confidence Bound)
タイトルとURLをコピーしました