探索方向

アルゴリズム:Algorithms

保護中: 機械学習における連続最適化での信頼領域法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習における連続最適化での信頼領域法(ドッグレッグ法、ノルム制約、モデル関数最適化、部分問題の近似解、修正ニュートン法、探索方向、大域的最適解、ニュートン法、最急降下法、信頼領域半径、信頼領域、降下方向、ステップ幅)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての準ニュートン法(1) アルゴリズムの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての準ニュートン法(BFGS公式、ラグランジュ乗数、最適性条件、凸最適化問題、KLダイバージェンス最小化、等式制約付き最適化問題、DFG公式、正定値行列、幾何構造、セカント条件、準ニュートン法の更新則、ヘッセ行列、最適化アルゴリズム、探索方向、ニュートン法)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての共役勾配法と非線形共役勾配法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての共役勾配法と非線形共役勾配法(モーメント法、非線形共役勾配法、探索方向、慣性項、Polak-Ribiere法、直線探索、ウルフ条件、Dai-Yuan法、強ウルフ条件、Fletcher-Reeves法、大域的収束性、ニュートン法、急速降下法、ヘッセ行列、凸2次関数、共役勾配法、最小固有値、最大固有値、アフィン部分空間、共役方向法、座標降下法)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としてのガウス・ニュートン法と自然勾配法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としてのガウス・ニュートン法と自然勾配法(シャーマン・モリソンの公式、1ランク更新、フィッシャー情報行列、正則条件、推定誤差、オンライン学習、自然勾配法、ニュートン法、探索方向、最急降下法、統計的漸近理論、パラメータ空間、幾何構造、ヘッセ行列、正定値性、ヘリンジャー距離、シュワルツの不等式、ユークリッド距離、統計学、レーベンバーグ・マーカート法、ガウス・ニュートン法、ウルフ条件)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としてのニュートン法と修正ニュートン法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための機械学習の連続最適化としてのニュートン法と修正ニュートン法(コレスキー分解、正定値行列、ヘッセ行列、ニュートン方向、探索方向、テイラー展開)
タイトルとURLをコピーしました