python

IOT技術:IOT Technology

保護中: 分散データ処理を可能とするApache Sparkの活用 -アプリケーションの開発と実行

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用れる分散データ処理を可能とするApache Sparkの活用 -アプリケーションの開発と実行(強制終了、yarn-clientモード、yarn-clusterモード、YARN、管理コマンド、クラスタ、python、Clojure、Shell、AWS、Glue、sparkplug、spark-shell、spark-submit、Nodemanager、HDFS、Sparkアプリケーション、Scala、sbt、plugin.sbt、build.sbt、ビルド、sbt-assemblyプラングイン、JARファイル)
アルゴリズム:Algorithms

トポロジカルデータアナリシスを用いたデータの位相幾何学的ハンドリング

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるトポロジカルデータアナリシスを用いたデータの位相幾何学的ハンドリング(文字認識への適用、クラスタリングへの適用、R、TDA、バーコードプロット、パーシステントプロット、python、scikit-tda、Death - Birth、ノイズのあるデータの解析、アルファ複体、ヴィートリス・リップス複体、チェック複体、位相的データ解析、タンパク質の解析、センサーデータ解析、自然言語処理、柔らかい幾何、硬い幾何、情報幾何、ユークリッド空間)
python

保護中: モデルフリー強化学習のpythonによる実装(3)経験を価値評価、戦略どちらの更新に利用するか:ValueベースvsPolicyベース

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモデルフリー強化学習のpythonによる実装ValueベースとPolicyベース(経験を価値評価、戦略どちらの更新に利用するか、Deep Q-Network、深層強化学習、Off-policy Actor Critic、Q-Learning、SARSA、Actor Critic法、Multi-step Learning、TD法、Monte Carlo法、TD(λ)法、Epsilon-Greedy法)
アルゴリズム:Algorithms

保護中: モデルフリー強化学習のpythonによる実装(2) モンテカルロ法とTD法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモンテカルロ法とTD法等のモデルフリー強化学習のpythonによる実装(Q-Learning、Valueベースの手法、Monte Carlo法、ニューラルネット、Epsilon-Greedy法、TD(λ)法、Muli-step Learning、Rainbow、A3C/A2C、DDPG、APE-X DQN)
アルゴリズム:Algorithms

保護中: モデルフリー強化学習のpythonによる実装(1) epsilon-Greedy法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用するためのモデルフリー強化学習の一つであるepsilon-Greedy法のpythonによる実装、多腕バンディット
python

保護中: モデルベースアプローチによる強化学習の概要とpythonでの実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモデルベースアプローチによる強化学習の概要とpythonでの実装(Bellman Equation、Value Iteration、Policy Iteration、動的計画法)
アルゴリズム:Algorithms

保護中: 強化学習の概要とシンプルなMDPモデルの実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習の概要とシンプルなMDPモデルのpythonでの実装
Clojure

ClojureとPythonの連携と機械学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるPythonモジュールのClojureとの連携ライブラリ(libpython-clj)の実装とサンプルコード(transformers、lime、autoencoder等)
python

GPy – Pythonを用いたガウス過程のフレームワーク

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルの応用であるガウス過程のPythonを用いた実装であるGPy(ガウス回帰問題,補助変数法,スパースなガウス回帰,Bayesian GPLVM,ガウス過程による潜在変数モデル)
python

SublimeText4とVS codeでのPython開発環境立ち上げ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるPythonの開発環境のSublimeText4とVS codeでの立ち上げ
タイトルとURLをコピーしました