人工知能:Artificial Intelligence

python

Kronecker-factored Approximate Curvature(K-FAC)行列の概要と関連するアルゴリズム及び実装例について

Kronecker-factored Approximate Curvature(K-FAC)行列の概要 Kronecker-factored Approximate Curvature(K-FAC)は、機械学習の最適化...
python

Trust Region Policy Optimization (TRPO)の概要とアルゴリズム及び実装例について

Trust Region Policy Optimization (TRPO)の概要 Trust Region Policy Optimization(TRPO)は、強化学習のアルゴリズムで、"ポリシー勾配法の概要...
アルゴリズム:Algorithms

有向非巡回グラフの適用事例と実装例およびブロックチェーン技術について

イントロダクション 有向非巡回グラフ(Directed Acyclic Graph, DAG)は、様々なタスクの自動管理、あるいはコンパイラ等の処理など様々な場面で登場するグラフデータアルゴリズムとなる。今回は、...
python

トレースノルムの概要と関連アルゴリズム及び実装例について

トレースノルムの概要 トレースノルム(または核ノルム)は、行列のノルムの一種であり、行列の特異値の和として定義されるものとなる。これは特に、行列の低ランク近似や行列の最小化問題において重要な役割を果たして...
python

GRUの概要とアルゴリズム及び実装例について

GRUの概要 GRU(Gated Recurrent Unit)は、"RNNの概要とアルゴリズム及び実装例について"で述べているリカレントニューラルネットワーク(RNN)の一種であり、系列データを処理するための深...
アルゴリズム:Algorithms

NUTSの概要とアルゴリズム及び実装例について

NUTSの概要 NUTS(No-U-Turn Sampler)は、"確率積分計算の為のMCMC法:メトロポリス法以外のアルゴリズム(HMC法)"でも述べているハミルトニアンモンテカルロ法(HMC)の一種であり、確...
python

ドリフト検出ベースの逆強化学習(Drift-based Inverse Reinforcement Learning)の概要とアルゴリズム及び実装例について

ドリフト検出ベースの逆強化学習(Drift-based Inverse Reinforcement Learning)の概要 ドリフト検出ベースの逆強化学習(Drift-based Inverse Reinforc...
python

ベイジアンニューラルネットワークの概要とアルゴリズム及び実装例について

ベイジアンニューラルネットワークについて ベイジアンニューラルネットワーク(BNN)は、確率論的な要素をニューラルネットワークに統合するアーキテクチャであり、通常のニューラルネットワークが確定論的であるのに対し、BNN...
python

プロポーザルネットワークの概要とアルゴリズム及び実装例

プロポーザルネットワークの概要 プロポーザルネットワークは、主にコンピュータビジョンや画像処理の分野で使用されるニューラルネットワークの一種で、特に物体検出や領域提案(object proposal)のタスクで利用さ...
python

Bidirectional LSTMの概要とアルゴリズム及び実装例について

Bidirectional LSTMの概要 Bidirectional LSTM(Long Short-Term Memory)は、リカレントニューラルネットワーク(RNN)の一種であり、時系列データや自然言語処...
タイトルとURLをコピーしました