アルゴリズム:Algorithms 逐次二次計画法について 逐次二次計画法について 逐次二次計画法(Sequential Quadratic Programming, SQP法)は、非線形制約を持つ非線形最適化問題を解くための反復型の最適化アルゴリズムであり、SQP法は制約つき最... 2024.09.02 アルゴリズム:Algorithms幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning
アルゴリズム:Algorithms フランク・ウォルフ法の概要と適用事例及び実装例 フランク・ウォルフ法の概要 フランク・ウォルフ法(Frank-Wolfe method)は、1956年にマルグリート・フランクとフィリップ・ウォルフによって提案された、非線形最適化問題を解くための数値計算アルゴリズムとな... 2024.08.07 アルゴリズム:Algorithmsグラフ理論スパースモデリングスパースモデリング幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms フロベニウスノルムの概要とアルゴリズム及び実装例 フロベニウスノルムの概要 フロベニウスノルムは、行列のノルムの一種であり、行列の要素の2乗和の平方根として定義されるものとなる。これは、行列 \( A \) のフロベニウスノルム \( ||A||_F \... 2024.07.30 アルゴリズム:Algorithmsグラフ理論スパースモデリングスパースモデリング幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
python トレースノルムの概要と関連アルゴリズム及び実装例について トレースノルムの概要 トレースノルム(または核ノルム)は、行列のノルムの一種であり、行列の特異値の和として定義されるものとなる。これは特に、行列の低ランク近似や行列の最小化問題において重要な役割を果たして... 2024.07.24 pythonアルゴリズム:Algorithmsグラフ理論スパースモデリングスパースモデリング幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
python 有限要素法の概要とアルゴリズム及び実装例 有限要素法の概要 有限要素法(Finite Element Method、FEM)は、物体や構造物の振る舞いや応力解析を数値的に解析するための手法であり、複雑な構造や物体に対する力や荷重の影響を詳細にモデル化... 2024.05.30 pythonアルゴリズム:Algorithmsシミュレーション幾何学:Geometry微分積分:Calculus機械学習:Machine Learning
アルゴリズム:Algorithms 重複のあるグループ正則化の概要と実装例について 概要 重複のあるグループ正則化(Overlapping Group Lasso)は、機械学習や統計モデリングにおいて、特徴選択やモデルの係数の推定に使用される正則化手法の一種であり、通常のグループ正則化と... 2024.05.29 アルゴリズム:Algorithmsグラフ理論スパースモデリングスパースモデリング幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
幾何学:Geometry 交差エントロピー損失について 交差エントロピー損失について 交差エントロピー損失(Cross-Entropy Loss)は、機械学習や深層学習において、分類タスクのモデルの性能を評価し、最適化するために使用される一般的な損失関数の一つであり、特に、二... 2023.12.18 幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms ベイズ構造時系列モデルの概要と適用事例及び実装例について ベイズ構造時系列モデルについて ベイズ構造時系列モデル(Bayesian Structural Time Series Model; BSTS)は、時間とともに変化する現象をモデル化する統計モデルの一種であり... 2023.08.25 アルゴリズム:Algorithmsグラフ理論スパースモデリングベイズ推定幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 強化学習は何故必要なのか?適用事例と技術課題及び解決のアプローチ イントロダクション chatGPTで有名なOpenAIのもう一つの側面として強化学習がある。chatGPTのベースとなっている"GPTの概要とアルゴリズム及び実装例について"で述べているGPTの肝は"深層学習におけ... 2023.08.11 アルゴリズム:Algorithmsグラフ理論スパースモデリング幾何学:Geometry強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
グラフ理論 変分ベイズ学習の概要と各種実装 機械学習における変分法について 変分法(Variational Methods)は、関数や確率分布の中で最適解を求めるために用いられ、機械学習や統計学などで広く使われる最適化手法の一つであり、特に、確率的生成モデルや変分自... 2023.08.10 グラフ理論スパースモデリングベイズ推定幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra