線形代数:Linear Algebra

グラフ理論

EMアルゴリズムと各種応用の実装例

EMアルゴリズムについて EMアルゴリズム(Expectation-Maximization Algorithm)は、統計的推定や機械学習の分野で広く用いられる"反復最適化アルゴリズムの概要と実装例について"で述べている...
アルゴリズム:Algorithms

ロバスト主成分分析の概要と実装例

  ロバスト主成分分析(Robust Principal Component Analysis、RPCA) ロバスト主成分分析(Robust Principal Component Analysis、RPCA)は、データの中...
アルゴリズム:Algorithms

トピックモデルの概要と様々な実装

  トピックモデルの概要 トピックモデルは、大量のテキストデータからトピック(テーマやカテゴリ)を自動的に抽出するための統計的モデルとなる。ここでのテキストデータの例としては、ニュース記事、ブログ記事、ツイート、顧客...
python

反復最適化アルゴリズムの概要と実装例について

反復最適化アルゴリズムの概要 反復最適化アルゴリズムは、与えられた問題の最適解を見つけるために反復的に近似解を改良していくアプローチとなる。これらのアルゴリズムは、最適化問題において特に有用であり、さまざまな分野で利用され...
python

線形二次計画法(LQ問題)の概要とアルゴリズム及び実装例

線形二次計画法(LQ問題)の概要 線形二次計画法(LQ問題、Linear Quadratic Problem)は、制御理論や最適化問題で広く利用される手法で、特に最適制御の分野で重要なものとなる。 線形二次計画法は...
アルゴリズム:Algorithms

DFP法(Davidon-Fletcher-Powell法)の概要とアルゴリズム及びその実装例について

DFP法(Davidon-Fletcher-Powell法)の概要 DFP法(Davidon-Fletcher-Powell法)は、数値最適化の手法の一つで、特に非線形最適化問題に適した手法となる。この手法は、二次近似の...
python

Pythonと機械学習(1)数学と基本的なアルゴリズム

  Pythonと機械学習 概要 Pythonは、簡単に学べること、読みやすいコードを書けること、広範囲にわたるアプリケーションに使えることなどの、多くの優れた特徴を持つ汎用プログラミング言語となる。...
python

線形計画法の概要とアルゴリズム及び実装例について

線形計画法の概要 線形計画法(Linear Programming, LP)は、線形関数を最適化(最大化または最小化)する問題を解く数学的手法であり、多くの最適化問題に適用され、特に資源配分、スケジューリング、輸送計画など...
グラフ理論

情報幾何とは何か

情報幾何の本質とは 情報幾何(Information Geometry)は、統計学や情報理論、機械学習などで使われる確率分布や統計モデルの幾何学的な構造を研究する分野であり、その本質的な考え方は、確率分布や統計モデルを幾...
python

Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)の概要とアルゴリズム及び実装例について

Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)について Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)は、ハミル...
タイトルとURLをコピーしました