自然言語処理:Natural Language Processing

python

Structural Deep Network Embedding(SDNE)の概要とアルゴリズム及び実装例

  Structural Deep Network Embedding(SDNE)の概要 Structural Deep Network Embedding(SDNE)は、オートエンコーダをグラフに拡張したグラフ...
python

GraREPの概要とアルゴリズム及び実装例

GraREPの概要 GraREP(Graph Random Neural Networks for Representation Learning)は、グラフ表現学習のための新しい深層学習モデルとなる。グラフ表現...
python

GNNにおける敵対的攻撃モデルの概要とアルゴリズム及び実装例

敵対的攻撃モデルについて 敵対的攻撃(Adversarial Attack)は、機械学習モデルに対する攻撃手法の一つであり、特に画像やテキスト、音声などの入力データに対して広く用いられるものとなる。敵対的攻撃は...
アルゴリズム:Algorithms

PATCHY-SANの概要とアルゴリズム及び実装例について

  PATCHY-SANの概要 "グラフ畳み込みニューラルネットワーク(Graph Convolutional Neural Networks, GCN)の概要とアルゴリズム及び実装例について"や、"ChebNet...
python

ChebNetの概要とアルゴリズム及び実装例について

  ChebNetの概要 ChebNet(Chebyshev ネットワーク)は、Defferradにより"Convolutional Neural Networks on Graphs with Fast Local...
python

機械学習におけるメッセージパッシングの概要とアルゴリズム及び実装例

機械学習におけるメッセージパッシング 機械学習におけるメッセージパッシングは、グラフ構造を持つデータや問題に対する効果的なアプローチで、特に、グラフニューラルネットワーク(Graph Neural Network...
python

グラフエンべディングの概要とアルゴリズム及び実装例

グラフエンべディングの概要 グラフ埋め込み(Graph Embedding)は、グラフ構造を低次元のベクトル空間にマッピングすることで、グラフのノードやエッジを密な数値ベクトルで表現して、機械学習アルゴリズムによ...
アルゴリズム:Algorithms

ReAct(Reasoning and Acting)の概要とその実装例について

ReAct(Reasoning and Acting)の概要 ReActは"プロンプトエンジニアリングの概要とその利用について"で述べているプロンプトエンジニアリングの手法の一つであり、"LangChainにおけるA...
Large-Scaleデータ

大規模言語モデルのファインチューニングとRLHF(Reinforcement Learning from Human Feedback)

イントロダクション 大規模言語モデルのファインチューニングとは、事前に大規模なデータセットで訓練されたモデルに対して、追加の学習を行うもので、汎用性の高いモデルを特定のタスクやドメインに適用することを可能にし、精度や...
アルゴリズム:Algorithms

グラフニューラルネットワーク

グラフニューラルネットワークの特徴と適用事例 概要 "グラフデータ処理アルゴリズムと機械学習/人工知能タスクへの応用"でも述べているグラフデータとは、頂点(ノード)とそれらを結ぶ辺(エッジ)からなるデータ構造を指...
タイトルとURLをコピーしました