Uncategorized

Uncategorized

反物質と重力とその応用

イントロダクション 先日NHKのニュースで"「反物質」の重力落下を初観測 日本人2人を含む国際研究G"というものが報道されていた。 反物質は、通常の物質と同じ質量を持ちながら、反対の電荷を持つ粒子で構成されて...
Uncategorized

バイポーラ型リン酸鉄リチウムイオン電池

  はじめに "寿命は100万kmってマジ? トヨタの新型電池が日本を救う!! 2027年登場バイポーラ型リン酸鉄リチウムイオン電池って何よ?"より。 「先般のトヨタ新技術発表会で突如として発表されたバイポーラ構造のリン酸...
Uncategorized

k-meansの概要と応用および実装例について

k-meansについて k-meansは、クラスタリングと呼ばれる機械学習のタスクで使用されるアルゴリズムの一つであり、様々なタスクで利用可能な手法となる。ここでのクラスタリングは、データポイントを類似した特徴を持つグルー...
Uncategorized

状態空間モデルの概要とRとPythonを用いた時系列データの解析の実装例

時系列データの解析の概要 時系列データとは、株価や気温、トラフィック量などの時間の経過に応じて値が変化するデータのことを呼ぶ。この時系列データに対して機械学習を適用することで、大量のデータを学習し、未知のデー...
Uncategorized

スパースモデリングの概要と適用事例及び実装

スパースモデリングの概要 スパースモデリングは、信号やデータの表現においてスパース性(疎な性質)を利用する手法となる。スパース性とは、データや信号において非ゼロの要素がごく一部に限られている性質を指す。ス...
Uncategorized

関数とは何か – その歴史とプログラミングと機械学習

関数について 関数は、一般的に、ある集合内の各要素に対して、別の集合内の唯一の要素を割り当てる規則として数学的に定義されるものとなる。このとき、最初の集合は「定義域」と呼ばれ、関数が適用される値の範囲を表す。二つ目の...
Uncategorized

保護中: 説明できる機械学習(18)敵対的サンプル (Adversarial Examples)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される敵対的サンプルアプローチを使った説明可能な機械学習(サイバーセキュリティ、サロゲートモデル、ニューラルネットワーク、ブラックボックスアタック、Expectation Over Transformation アルゴリズム、EOT、InceptionV3、TensorFlow、Fast gradient法、VGG16 分類器、ImageNet、敵対的パッチ、1-pixel attack、L-BFGS 法、Fast gradient sign method)
Uncategorized

最近の国際学会で注目される人工知能技術について

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクで活用される最近の国際学会で注目される人工知能技術について(マルチモーダル技術、Federated Learning、質問応答型学習、自動機械学習、AutoML、Few-Shot Learning、One-Shot Learning、メタ学習、Meta-Learning、グラフニューラルネットワーク、Graph Neural Networks、GNN、自己教師あり学習、Self-Supervised Learning、IJCAI、AAAI、TNNLS、CVPR、ACM SIGKDD、ICLR、NeurIPS、ICML)
Uncategorized

保護中: 説明できる人工知能(15)モデル非依存の解釈(シャープレイ値(sharpley value))

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される説明できる人工知能としてのシャープレイ値を用いたモデル非依存解釈(breakDown、fastshap、R言語、対称性の公理、LIME、SHAP、スパースな説明、効率性、対称性、ダミー、加法性の原理、シャープレイ値、協力ゲーム理論)
Uncategorized

保護中: 機械学習のためのオンライン型確率的最適化と確率的双対平均化法(SDA)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習のためのオンライン型確率的最適化と確率的双対平均化法(鏡像降下法、強凸関数、凸関数、収束レート、多項式減衰平均化、強凸正則化)
タイトルとURLをコピーしました