マルチエージェントシステム

アルゴリズム:Algorithms

保護中: 深層強化学習の弱点である環境認識の改善の為の2つのアプローチの実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される深層強化学習の弱点である環境認識の改善の為の2つのアプローチの実装(逆予測型、制約型、表現学習、模倣学習、再構成型、予測型、WorldModels、遷移関数、報酬関数、表現学習、VAE、Vision Model、RNN、Memory RNN、モンテカルロ法、TD Search、モンテカルロ木探索、モデルベースの学習、Dyna、深層強化学習の弱点)
アルゴリズム:Algorithms

保護中: 強化学習に対するニューラルネットワークの適用 戦略をパラメータを持った関数で実装するPolicy Gradient

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 戦略をパラメータを持った関数で実装するPolicy Gradient(割引現在価値、戦略更新、tensorflow、Keras、CartPole、ACER、Actor Critoc with Experience Replay、Off-Policy Actor Critic、behaviour policy、Deterministic Policy Gradient、DPG、DDPG、Experience Replay、Bellman Equation、方策勾配法、行動履歴)
web技術:web technology

保護中: クラウドネイティブとサービス中心の開発について

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるクラウドネイティブとサービス中心の開発について(組織間、サイロ化、KPI、ビジネス価値、コンウェイの法則、組織構造改革、プロセス改革、CNCF Incubatingステージ、CNCF Graduateステージ、CNCF Sandboxステージ、Technical Oversight Committee、End User Advisory Board、クラウドネイティブアプリケーション開発、Kubernetes、アプリケーションモダナイゼーション、The Twelve-Factor App、12個のアプリケーション原則、コンテナオーケストレーション、API、サービスベースアーキテクチャ、SOA、Service Oriented Architecture、マイクロサービス、疎結合、デリバリーパフォーマンス、MTTR、リードタイム、変更損失率、デプロイ頻度、Docker)
web技術:web technology

保護中: インフラストラクチャの管理ツールTerraformのセットアップ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるインフラストラクチャの管理ツールTerraformのセットアップ(git-secrets、Dockernized Terraform、AWSのクレデンシャル、チーム開発、tfenv、Homebrew、AWS CLI、AWSマネジメントコンソール、アクセスキーID、シークレットアクセスキー、python、Identity and Access Management、AWS、環境設定)
IOT技術:IOT Technology

保護中: 分散データ処理を可能とするApache Sparkの活用 -アプリケーションの開発と実行

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用れる分散データ処理を可能とするApache Sparkの活用 -アプリケーションの開発と実行(強制終了、yarn-clientモード、yarn-clusterモード、YARN、管理コマンド、クラスタ、python、Clojure、Shell、AWS、Glue、sparkplug、spark-shell、spark-submit、Nodemanager、HDFS、Sparkアプリケーション、Scala、sbt、plugin.sbt、build.sbt、ビルド、sbt-assemblyプラングイン、JARファイル)
アーキテクチャ

マイクロサービスのデプロイと運用-DockerとKubernetes

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるマイクロサービスのデプロイと運用-DockerとKubernetes(minikube、コンテナ、デプロイ、kube-ctl、ローリングアップグレード、自動ビンパッキング、水平スケーリング、スケールアップ、スケールダウン、自己回復、kubelet、kube-apiserver, etcd, kube-controller- manager, kube- scheduler、Pod、kube-proxy、Docker CLI、Docker Registry、cgroups、Linuxカーネル、カーネルネームスペース 、ユニオンマウントオプション、Hypervisor)
Clojure

マイクロサービスを含めたシステム運用監視の為のElasticStashの活用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるマイクロサービスを含めたシステム運用監視の為のElasticStashの活用(Riemann、ロールアップ、スロットル構造、KafKaプラグイン、UTC、timbre、LogStash、log4j、tools.logging、構造化ロギング、一般的なログフォーマット、可視化機能、ダッシュボード、Kibana、パイプライン、UDP、Collectd、RRD、stdin、stdout、ELK Stack、Elastic Stack、Apache Kafka
アルゴリズム:Algorithms

保護中: モデルフリー強化学習のpythonによる実装(2) モンテカルロ法とTD法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモンテカルロ法とTD法等のモデルフリー強化学習のpythonによる実装(Q-Learning、Valueベースの手法、Monte Carlo法、ニューラルネット、Epsilon-Greedy法、TD(λ)法、Muli-step Learning、Rainbow、A3C/A2C、DDPG、APE-X DQN)
Clojure

マイクロサービスでのセキュリティ- ClojureでのAuthとPedestalを使ったAPI

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるマイクロサービスでのセキュリティ- ClojureでのAuthとPedestalを使ったAPI(Buddy、BUddy sign、JSON Web Tokens、JSON Web Signature、JSON Web Encryption)
アルゴリズム:Algorithms

保護中: モデルフリー強化学習のpythonによる実装(1) epsilon-Greedy法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用するためのモデルフリー強化学習の一つであるepsilon-Greedy法のpythonによる実装、多腕バンディット
タイトルとURLをコピーしました