人工知能:Artificial Intelligence

アルゴリズム:Algorithms

保護中: 機械学習のためのオンライン型確率的最適化とAdaGrad、ミニマックス最適化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習のためのオンライン型確率的最適化とAdaGrad、ミニマックス最適化(スパース性のパターン、訓練誤差、バッチ型確率的最適化、オンライン型確率的最適化、バッチ勾配法、ミニマックス最適性、汎化誤差、リプシッツ連続、強凸性、ミニマックス最適誤差、ミニマックス誤差評価、1次確率的オラクル、確率的双対平均化法、確率的勾配降下法、正則項、ネミロフスキー、ユーディン、凸最適化法、期待誤差上限、リグレット、半正定値行列、鏡像降下法、ソフト閾値関数)
IOT技術:IOT Technology

保護中: 分散データ処理を可能とするApache Sparkの活用 -アプリケーションの開発と実行

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用れる分散データ処理を可能とするApache Sparkの活用 -アプリケーションの開発と実行(強制終了、yarn-clientモード、yarn-clusterモード、YARN、管理コマンド、クラスタ、python、Clojure、Shell、AWS、Glue、sparkplug、spark-shell、spark-submit、Nodemanager、HDFS、Sparkアプリケーション、Scala、sbt、plugin.sbt、build.sbt、ビルド、sbt-assemblyプラングイン、JARファイル)
アルゴリズム:Algorithms

データの幾何学的アプローチ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるデータの幾何学的アプローチ(物理学、量子情報、オンライン予測、ブレグマン・ダイバージェンス、フィッシャー情報行列、ベーテ自由エネルギー関数、ガウシアングラフィカルモデル、半正定値計画問題、正定値対称行列、確率分布、双対問題、トポロジカル、柔らかい幾何学、位相幾何学、量子情報幾何、ワッサースタイン幾何、ルピナー幾何、統計幾何学)
アルゴリズム:Algorithms

トポロジカルデータアナリシスを用いたデータの位相幾何学的ハンドリング

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるトポロジカルデータアナリシスを用いたデータの位相幾何学的ハンドリング(文字認識への適用、クラスタリングへの適用、R、TDA、バーコードプロット、パーシステントプロット、python、scikit-tda、Death - Birth、ノイズのあるデータの解析、アルファ複体、ヴィートリス・リップス複体、チェック複体、位相的データ解析、タンパク質の解析、センサーデータ解析、自然言語処理、柔らかい幾何、硬い幾何、情報幾何、ユークリッド空間)
アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 確率一致法とトンプソン抽出

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 確率一致法とトンプソン抽出(最悪時リグレット最小化、問題依存リグレット最小化、最悪時リグレット上界、問題依存リグレット、最悪時リグレット、MOSS方策、標本平均、補正項、UCBのリグレット上界、敵対的バンディット問題、トンプソン抽出、ベルヌーイ分布、UCB方策、確率的一致法、確率的バンディット、ベイズ統計、KL-UCCB方策、ソフトマックス方策、チェルノフ・ヘフディングの不等式)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としてのカーネル関数

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としてのカーネル関数(ガウシアンカーネル、多項式カーネル、線形カーネル、カーネル関数、回帰関数、線形モデル、回帰問題、判別問題)
アルゴリズム:Algorithms

保護中: 勾配法の基礎(直線探索法、座標降下法、最急降下法と誤差逆伝搬法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される勾配法の基礎(直線探索法、座標降下法、最急降下法と誤差逆伝搬法、確率的最適化、多層パーセプトロン、アダブースト、ブースティング、ウルフ条件、ゾーテンダイク条件、アルミホ条件、バックトラッキング法、ゴールドシュタイン条件、強ウルフ条件)
アルゴリズム:Algorithms

保護中: ベイズ推論による機械学習 – 混合モデルとデータ生成過程と事後分布

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用されるベイズ推論による機械学習での混合モデルとデータ生成過程と事後分布(グラフィカルモデル、ポアソン分布、ガウス分布、ディリクレ分布、カテゴリ分布)
推論技術:inference Technology

保護中: 説明できる人工知能(9)モデル非依存の解釈(ALE plot)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用可能な説明できる機械学習での後付け解釈モデル、モデル非依存解釈手法のうちの一つALE plotについて
Clojure

保護中: Apache SparkとMLlibによる大規模な機械学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるApache SparkとMLlibによる大規模な機械学習(予測値、RMSE、因子行列、ランク、潜在的特徴、近傍領域、二乗和誤差、Mahout、ALS、Scala、RDD、交互最小二乗法、alternating least squares、確率的勾配降下法、永続化、キャッシュ、Flambo、Clojure、Java)
タイトルとURLをコピーしました