Pythonと機械学習
概要
Pythonは、簡単に学べること、読みやすいコードを書けること、広範囲にわたるアプリケーションに使えることなどの、多くの優れた特徴を持つ汎用プログラミング言語となる。Pythonは、1991年にGuido van Rossumによって開発されている。
Pythonは、比較的新しい言語であるため、オブジェクト指向プログラミング、手続き型プログラミング、関数型プログラミング等の様々な効果的なプログラミング手法を利用することができる。また、多くのライブラリやフレームワークが用意されているため、Webアプリケーション、デスクトップアプリケーション、科学技術計算、機械学習、人工知能などの分野に広く使われている。さらに、クロスプラットフォームであり、Windows、Mac、Linuxなどの多くのオペレーティングシステムで動作するという特徴を持つ。Pythonは、インタープリタ言語であるため、コンパイルの必要がなく、REPL的な仕組みを持つため、開発サイクルが早くなる。
Pythonの開発環境には、以下に示すような開発環境が準備されている。
- Anaconda: Anacondaは、Pythonのデータサイエンスに必要なパッケージやライブラリを含む、オールインワンのデータサイエンスプラットフォームとなり、Jupyter Notebookなどのツールも含まれて、簡単にデータ分析や機械学習のプロジェクトを始めることができるものとなる。
- PyCharm: PyCharmは、JetBrainsが開発したPythonの統合開発環境(IDE)で、デバッグ、自動補完、テスト、プロジェクト管理、バージョン管理などのPythonの開発に必要な多くの機能を提供しており、プロジェクトの品質と生産性を向上させることができるものとなっている。
- Visual Studio Code: Visual Studio Codeは、Microsoftが開発したオープンソースのコードエディタで、Pythonの開発にも対応しているものとなる。これは豊富な拡張機能を備えており、Pythonの開発に必要な機能を簡単に追加できる。
- IDLE: IDLEは、Pythonに付属するシンプルで使いやすく、Pythonの学習に最適な標準の開発環境となる。
これらの環境を用いて、webアプリケーションや機械学習のコードを実装する。webアプリケーションのためのフレームワークは、MVCアーキテクチャに基づいた機能、セキュリティ、データベース、認証など、Webアプリケーションの開発に必要な多くの機能を提供するものとなり、以下のようなものがある。
- Django: Djangoは、Pythonで最も広く使われているWebアプリケーションフレームワークの一つ。MVCアーキテクチャに基づき、高速で堅牢なアプリケーションを開発することができる。
- Flask: Flaskは、軽量で柔軟なWebアプリケーションフレームワークで、Djangoに比べて学習コストが低いため、初心者から上級者まで幅広いプログラマーに使われている。
- Pyramid: Pyramidは、柔軟なアーキテクチャと豊富な機能を備えたWebアプリケーションフレームワークとなる。DjangoやFlaskよりも高度なカスタマイズが可能であり、大規模なアプリケーションに向いている。
- Bottle: Bottleは、軽量でシンプルなWebアプリケーションフレームワークで、小規模なアプリケーションやAPIを簡単に構築することができる。
最後に機械学習を扱うためのライブラリを示す。
- Scikit-learn: Scikit-learnは、Pythonで最も広く使われている機械学習ライブラリ。分類、回帰、クラスタリング、次元削減など、さまざまな機械学習アルゴリズムを提供している。
- TensorFlow: TensorFlowは、Googleが開発したオープンソースの機械学習ライブラリで、ニューラルネットワークの構築、トレーニング、推論など、多くの機能を提供している。
- PyTorch: PyTorchは、Facebookが開発したオープンソースの機械学習ライブラリで、ニューラルネットワークの構築、トレーニング、推論など、TensorFlowと同様の機能を提供している。
- Keras: Kerasは、高水準のニューラルネットワークAPIを提供するライブラリで、TensorFlow、Theano、Microsoft Cognitive Toolkitのバックエンドをサポートしている。
- Pandas: Pandasは、データ処理を行うためのライブラリで、表形式のデータを扱うことができる。機械学習においては、データの前処理によく使われる。
これらのライブラリやフレームワークをうまく組み合わせることで様々なアプリケーションを構築することができる。
Pythonと機械学習について
Pythonは、設計者によって与えられた抽象的な命令を用いてプログラミングする高級言語であり(対義語としては、マシンレベルで命令とデータオブジェクトを使ってプログラミングする低級言語(low-level)がある)、様々な用途に適用可能な汎用言語(対義語としては特定の用途に向けて言語が最適化されている特殊目的語(targted to an application)がある)、ソースコート(siurce code)とよばれるプログラマの書いた命令が直接(インタープリタによって)実行される(対義としては、最初に(コンパイラによって)マシンレベルの基本的な命令に変換されるものがある)ものとなる。
Pythonは用途が広いプログラミング言語であり、コンピューターのハードウェアに直接アクセスする必要がなく、ほぼすべてのプログラムを効率的に作成する事ができる。Pythonは(静的意味論のチェックが脆弱なため)高い信頼性が求められるプログラムには適切でない。また(同じ理由により)多くの人が関わる、もしくは長期にわたり開発・維持するようなプログラムにも向かない。
しかしながら、Pythonは比較的シンプルな言語であり、学ぶ事が容易で、インタープリタ言語として設計されている為、初心者プログラマにとって非常に有用な、実行すぐのフィードバックが可能となる。また、自由に利用可能なライブラリが多数用意されており、それらを用いる事で様々な拡張機能が活用可能となる。
Pythonは1990年にGuido von Rossumによって開発されて以来、最初の10年は知名度は低く、ほとんど使われない言語であったが、2000年のPython2.0により、言語そのものへの重要な改善が多数加わり、進化の道筋の転換が行われた。また多くの人々によりPythonとのシームレスなインターフェースを持つライブラリの開発がスタートし、Python系の支援と開発が継続的に行われた。2008年にはPython3.0がリリースされた。このバージョンのPythonはPython2の多くの矛盾を改善した。しかしながら、これは後方互換性がない(前のバージョンのPythonで書かれたほとんどのプログラムは動かない)ものとなった。
ここ数年で重要なパブリックドメインで公開されているPythonのライブラリのほとんどはPython3に移植され、さらに多くの人々に活用されている。
本ブログでは、このPythonに関して以下の項目について述べている。
機械学習/自然言語処理/画像処理
長文のNLP(自然言語処理)処理において、文のセグメンテーション(文の分割)は重要なステップであり、長文を文に分割することにより、テキストの理解や解析が容易になり、さまざまなタスクに適用できるようになる。以下に、長文のNLP処理における文のセグメンテーションの概要について述べる。
テキストデータから感情を抽出する手法としては、具体的には、文章をトークンに分割し、単語の意味や文脈を理解するために機械学習アルゴリズムを使用し、感情分析のためのデータセットを使用してモデルをトレーニングすることで、未知のテキストに対して感情コンテキストを予測することが実現される。
コンパッショネートAI(Compassionate AI)や共感型AI(Empathetic AI)は、感情的な理解や思いやりを持ち、ユーザーの感情や心理状態に配慮した対応を行うことを目的としたAIを指す。これらのAIは、感情認識や自然な会話を通してユーザーと信頼関係を築き、より個別化された支援を提供することが可能で、医療や教育、メンタルヘルス、接客業務など、感情的なサポートが必要とされる分野で特に注目されている技術となる。
Sentiment Lexicons(感情極性辞書)は、単語やフレーズがどれだけ肯定的または否定的であるかを示すための辞書となる。これを使用して統計的手法で感情分析を行う方法は(1)単純なカウントベースの手法、(2)重み付け手法、(3)TF-IDFを組み合わせた手法、(4)機械学習アプローチ等がある。
自己学習(Self-Supervised Learning)は、機械学習の一分野で、ラベルのないデータから学習を行うアプローチの一つであり、言語処理の自己学習アプローチは、言語モデルの訓練や表現学習において広く利用されている手法となる。以下に、言語処理の自己学習アプローチの概要について述べる。
Word Sense Disambiguation(WSD)は、自然言語処理(NLP)の分野で重要な課題の一つで、この技術の目的は、文中の単語が複数の意味で使われている場合に、正確にその単語の意味を特定することとなる。言い換えれば、同じ単語が文脈によって異なる意味を持つ場合、WSDはその正しい意味を特定しようとする。WSDは、機械翻訳、情報検索、質問応答システムなど、さまざまなNLPタスクで重要な前処理ステップとなる。文中の単語がどの意味で使用されているかを正確に理解することができれば、システムはより適切で意味の通った結果を生成できる可能性が高まる。
安定結婚問題(Stable Marriage Problem, SMP)アルゴリズムは、2つのグループ間での「安定したマッチング」を実現するための問題と解法の一種となる。この問題の最も有名な解法として「ゲイル=シャプレー・アルゴリズム(Gale–Shapley Algorithm)」があり、安定した組み合わせを効率よく見つけることが可能で、このアルゴリズムは特に、医学生と病院のマッチング、求職者と企業のマッチングなど、現実の多くのマッチング問題に応用されるものとなる。
サージ・プライシング(需要に応じた動的価格設定)は、特定の条件下で価格が変動し、消費者の需要や供給状況に応じて最適な価格をリアルタイムで設定するものとなる。これを実現するため、様々な機械学習やアルゴリズムを活用されており、特に需要予測や市場分析の技術が重要な役割を果たしている。
様々な資本の分配に用いられる手法としてケリー基準や公平性を考慮した最適化アルゴリズムがある。ケリー基準は、ギャンブルや投資において資本を最適に配分するための方法で、投資や賭けの期待値がポジティブである場合に、どれくらいの資金を投入すべきかを計算するものとなる。
予測制約法(Predictive Control with Constraints)は、制約条件を満たしながらシステムの将来の挙動を予測し、制御入力を設計するための制御手法となる。この手法は、制約条件の下でシステムの性能を最適化することを目指している。
- Netflixにおける推薦システム
Netflixの推薦システムは、ユーザーの視聴履歴、評価、検索履歴、閲覧時間、およびお気に入りリストなどの情報を基にして、そのユーザーにとって最適なコンテンツを提案することを目的としたものとなる。このシステムは、機械学習とアルゴリズムの組み合わせを使用している。具体的には、過去の視聴履歴をもとに、そのユーザーが好きなジャンル、俳優、監督などを特定し、同様の要素を含むコンテンツを提案し、また、そのユーザーが選んだ作品を評価することで、そのユーザーが好む傾向に合わせたコンテンツを提供するためのデータを収集することができるものとなっている。
知識グラフは、エンティティ(人、物、概念など)間の関係を表現するグラフであり、複数の関連性を持つエンティティを表すことが可能なデータ形式であり、知識グラフを使った推薦は、ユーザーの好みや興味をより正確に反映することができる推薦方法の一つとなる。
“Netflixにおける推薦システム“で述べたMatrix Factorizationは、ストリーミングデータを扱う場合にも有用な手法となる。通常、Matrix Factorizationでは、全ての評価データを行列にまとめてから、特徴ベクトルを学習するが、ストリーミングデータの場合は、データが一定の速度で流れてくるため、全てのデータをまとめて学習することができない。このような場合には、”オンライン学習の概要と各種アルゴリズム、適用事例と具体的な実装“で述べているオンライン学習(Online Learning)を用いることが可能で、オンライン学習では、新しいデータが流れてくるたびに、それをすぐに学習することができる。Matrix Factorizationにおいても、オンライン学習を用いることで、ストリーミングデータをリアルタイムに学習することが可能となる。
ミニマックス法は、ゲーム理論や人工知能の分野で広く使用される探索アルゴリズムの一種であり、完全情報ゲーム(両プレイヤーが全ての情報を知っているゲーム)において最適な手を選択するために使用されるものとなる。代表的なゲームとしては、チェスや将棋、オセロ、囲碁などがある。
- Cluster-based Diversificationの概要とアルゴリズム及び実装例
Cluster-based Diversificationは、アイテムのクラスタリングを利用して推薦システムに多様性を導入する手法となる。この手法では、類似したアイテムを同じクラスタにグループ化し、異なるクラスタからアイテムを選択することで多様性を実現している。
自動機械学習(AutoML)は、機械学習モデルの設計、トレーニング、最適化のプロセスを自動化するための手法やツールを指す。AutoMLは、機械学習の専門知識が限られているユーザーや、効率的なモデルの開発を求めるユーザーにとって特に役立つものであり、以下の主な目標を持っている。ここでは、このAutoMLの概要と様々な実装例について述べている。
Byte Pair Encoding(BPE)は、テキストデータの圧縮とトークン化に使用されるテキスト符号化手法の一つとなる。BPEは特に自然言語処理(NLP)のタスクで広く使用され、効果的なトークン化手法として知られている。
SentencePieceは、テキストデータのトークン化(分割)を行うためのオープンソースのライブラリおよびツールキットとなる。SentencePieceは、特に異なる言語や文字セット、テキストデータの多様性に対応するために設計されており、多くの自然言語処理(NLP)タスクで使用されている。
InferSent(インファーセント)は、自然言語処理(NLP)のタスクにおいて、文の意味表現を学習するための手法であり、文の埋め込み(ベクトル表現)を学習し、そのベクトルを用いて文の類似性や意味的な関連性を評価することができるものとなる。以下は、InferSentの概要についての主な特徴となる。
Skip-thought vectors(Skip-thought ベクトル)は、文の意味表現を生成するニューラルネットワークモデルで、文脈を考慮した文の埋め込み(embedding)を学習するために設計されたものであり、2015年にKirosらによって提案されている。このモデルは、文の前後の文脈を考慮して、文を連続的なベクトル空間に埋め込むことを目的としている。以下に、Skip-thought vectorsの主な概念と構造について述べる。
Unigram Language Model Tokenizer(UnigramLM Tokenizer)は、自然言語処理(NLP)タスクで用いられるトークン化アルゴリズムの一つとなる。Unigram Language Model Tokenizerは、単語をトークン化する従来のアルゴリズムとは異なり、部分単語(サブワード)のトークン化に焦点を当てている。
SAMは、因果推論の文脈で使用される手法の一つであり、この手法は、データから因果関係を推定する際に、特定の仮定や事前知識に依存せずにモデルを構築することを目指すものとなる。従来の因果推論手法では、特定の因果構造や仮定に基づいたモデルが使用されることが一般的だが、これらの仮定が現実のデータに対して正確であるかどうかは明確ではない場合があった。また、因果関係の推定においては、仮定によってバイアスが生じる可能性もあった。SAMは、このような仮定や事前知識に依存せずに因果関係を推定する手法であり、具体的には、データから因果効果を推定するためのモデルを構築する際に、因果関係の仮定や制約を最小限に抑えることを重視するものとなる。
Federated Learning(フェデレーテッド ラーニング)は、機械学習モデルを訓練する新しいアプローチであり、データが分散している環境でのプライバシー保護や効率的なモデルトレーニングに対する課題に対処するための手法となる。従来の中央集権的なモデルトレーニングとは異なり、Federated Learningはデバイスやクライアント自体でモデルのトレーニングを行い、中央のサーバにモデルを送信することなく分散学習を行う仕組みとなる。ここでは、このFederated Learningの概要と各種アルゴリズム及び実装例について述べている。
機械学習におけるアクティブラーニング(Active Learning)は、モデルの性能を向上させるために、ラベル付けされたデータを効果的に選択するための戦略的なアプローチとなる。通常、機械学習モデルのトレーニングには大量のラベル付けされたデータが必要だが、ラベル付けはコストが高く、時間がかかるため、アクティブラーニングはデータ収集の効率を高めるものとなっている。
- 機械学習技術でのターゲットドメインに特化したファインチューニングについて
ターゲットドメインに特化したファインチューニングは、機械学習技術において、あるモデルを事前に訓練された一般的なモデルから、特定のタスクやドメインに関連するタスクに適したモデルに調整するプロセスを指す。これは、転移学習の一形態であり、以下のようなステップで実行される。
質問応答型学習(Question Answering, QA)は、自然言語処理の一分野で、与えられた質問に対して適切な回答を生成するタスクとなる。QAシステムは、テキストデータや文書から情報を抽出し、質問に対する適切な回答を生成する能力を持っている。QAは、情報検索、知識ベースのクエリ処理、顧客サポート、仕事の効率化などのさまざまなアプリケーションで活用されている。ここではこの質問応答型学習の概要とアルゴリズム及び各種実装について述べている。
機械学習における並列分散処理は、データや計算を複数の処理ユニット(CPU、GPU、コンピュータクラスタなど)に分散し、同時に処理することで処理時間の短縮やスケーラビリティの向上を実現するもので、大規模なデータセットや複雑なモデルを処理する際に重要な役割を果たすものとなる。ここではこの機械学習における並列分散処理に対して、オンプレ/クラウド環境での具体的な実装例について述べている。
モデル予測制御(Model Predictive Control, MPC)は、制御理論の一手法であり、制御対象のモデルを使用して将来の状態や出力を予測し、最適な制御入力を計算するためのオンライン最適化手法となる。MPCはさまざまな産業および制御アプリケーションで使用される。
機械学習のタスクにおいて、再現率は分類タスクに主に使われる指標となる。この再現率(Recall)100%を実現するとは、一般的なタスクの例で考えると、本来見つけたいデータ(陽性)を抜け漏れなく全て抽出することを意味し、現実のリスクが絡むタスクでは頻繁に現れるものとなる。
しかしながらこのような再現率100%の実現は、データの特性や問題の複雑さによって制約され、一般的に達成することは困難となる。また、再現率100%を追求すると偽陽性(本来の陰性を陽性と間違える)の割合が増える可能性もあるため、そのバランスを考慮する必要も出てくる。
ここでは、この再現率100%を実現するために考慮するべき課題とそれらに対するアプローチおよび具体的な実装について述べる。
フェルミ推定(Fermi estimation)は、精密な計算や詳細なデータが得られない場合に、大まかな見積もりをするための方法で、物理学者エンリコ・フェルミにちなんで名付けられたものとなる。フェルミ推定は、論理的思考と適切な仮定を用いて、複雑な問題に対して素早く近似的な答えを見つけるための手段として広く用いられている。今回は、このフェルミ推定を人工知能技術を用いて検討する方法について述べる。
ここではpyhtonを使った機械学習/データ分析の概要と代表的なライブラリの紹介について述べる。
統計的な仮説検定(Statistical Hypothesis Testing)は、統計学の中で、ある仮説が真であるかどうかを確率的に評価する手法であり、統計手法の評価に用いられるだけではなく、機械学習においても、予測の信頼性評価やモデルの選択と評価に用いられたり、”説明できる機械学習“でも述べているような特徴選択の評価に用いられたり、”異常検知と変化検知技術“で述べている様な正常と異常の判別性能の検証などで用いられるなど、基本的な技術となっている。ここでは、この統計的な仮説検定に関して、様々な手法とそれらの具体的な実装例について述べている。
k-meansは、クラスタリングと呼ばれる機械学習のタスクで使用されるアルゴリズムの一つであり、様々なタスクで利用可能な手法となる。ここでのクラスタリングは、データポイントを類似した特徴を持つグループ(クラスタ)に分割する手法を指し、k-meansアルゴリズムは、与えられたデータを指定された数のクラスタに分割することを目指すものとなる。ここではこのk-meansの様々なアルゴリズムおよびその具体的な実装について述べている。
決定木(Decision Tree)は、機械学習やデータマイニングのための予測モデルとして使用され、木構造を持つ分類・回帰手法となる。決定木ではデータの特徴(特徴量)に基づいて、クラス(分類)や数値(回帰)を予測するための条件分岐のルールを木の形で構築できるため、”説明できる機械学習“で述べられている様に機械学習の結果をホワイトボックス化することができる。ここでは、この決定木に関して様々なアルゴリズムとその具体的な実装例について述べている。
学習するデータの量が少ない(スモールデータ)という課題は、機械学習の精度を下げる要因として様々なタスクで現れる問題となる。スモールデータでの機械学習は、データの制約や過学習のリスクを考慮しながら、様々なアプローチをとる。ここではそれぞれのアプローチの詳細と実装例について述べている。
- SMOTE(Synthetic Minority Over-sampling Technique)の概要とアルゴリズム及び実装例について
SMOTE(Synthetic Minority Over-sampling Technique)は、不均衡なクラス分布を持つデータセットにおいて、少数派クラス(minority class)のサンプルを合成して過少サンプリングを補完するための手法となる。SMOTEは、主に機械学習のクラス分類タスクにおいて、モデルの性能向上を図るために利用されている。以下にその概要について示す。
アンサンブル学習(Ensemble Learning)は、機械学習の一種で、複数の機械学習モデルを組み合わせて、より強力な予測モデルを構築する手法となる。単一のモデルよりも複数のモデルを組み合わせることで、モデルの予測精度を向上させることができる。アンサンブル学習は、様々なアプリケーションで成功を収めており、機械学習の中でも非常に一般的なテクニックの一つとなる。
- アンサンブル学習とマルチエージェントシステム
アンサンブル学習にマルチエージェントシステム(MAS)を適用することを考える。具体例としては、分散型のアンサンブル学習や協調的な学習環境での活用が挙げられる。これらのアプローチは、アンサンブル学習のパワーをマルチエージェントシステムの分散処理や協調動作と組み合わせ、システム全体のパフォーマンスを向上させるものとなる。
- マルチエージェントシステムによるReActの実装について
“ReAct(Reasoning and Acting)の概要とその実装例について“で述べているReAct(Reasoning and Acting)は、AIシステムのアーキテクチャの一つであり、推論と行動のサイクルを通じてエージェントが問題解決や意思決定を行うフレームワークとなる。マルチエージェントシステムにおけるReActの実装では、複数のエージェントが協調的または競争的に動作し、相互に影響を与えながらタスクを進めている。”マルチエージェントシステム入門“でも述べているマルチエージェントシステム(MAS)では、複数のエージェントが同時に動作し、協力や対立を通じて問題を解決する。ReActアーキテクチャをMASに適用する際には、以下のような実装手順が考えられる。
- Multi-step bootstrappingの概要とアルゴリズム及び実装例
Multi-step bootstrappingは、統計学や機械学習の分野で用いられる手法で、特に不確実性を評価するために使われるもので、”アンサンブル学習の概要とアルゴリズム及び実装例について“で述べている一般的なブートストラップ法(サンプルデータをランダムに再抽出して推定値の分布を構築する方法)を拡張したものとなる。
課題分析のフレームワークにChatGPTを組み合わせることで、AIのアシストによる課題解決ソリューションを構築することができる。このソリューションは、既存のフレームワークに生成AIの特性を活かすことで、効率的かつ深い洞察を得ることを可能としている。以下にて具体的な解決の手順例を示します。
自律的な人工知能技術とは、人工知能が自ら学習し、問題を解決することができる能力を持つ技術であると定義することができる。これらを実現する為には自己学習、自己判断、自己修復、自己複製のような機能が必要になってくると考えられる。
転移学習(Transfer Learning)は、機械学習の一種であり、あるタスクで学習したモデルや知識を、異なるタスクに適用する技術であり、通常、新しいタスクに必要なデータが少ない場合や、高い性能を要求するタスクにおいて、転移学習が有用となる。ここでは、この転移学習の概要及び様々なアルゴリズムと実装例について述べている。
DBSCANは、データマイニングや機械学習における人気のあるクラスタリングアルゴリズムであり、クラスタの形状を仮定するのではなく、データポイントの空間密度に基づいてクラスタを発見することを目的としたアルゴリズムとなる。ここでは、このDBSCANの概要とアルゴリズム、様々な適用事例とpythonによる具体的な実装について述べている。
FP-Growth(Frequent Pattern-Growth)は、データマイニングおよび頻出パターンマイニングのための効率的なアルゴリズムであり、トランザクションデータセットから頻出パターン(アイテムセット)を抽出するために使用される手法となる。ここでは、このFP-Growthアルゴリズムに関して様々な応用事例およびpythonによる実装例について述べる。
セグメンテーションネットワークは、画像内の異なる物体や領域をピクセル単位で識別し、それらをセグメント(領域)ごとに分割するためのニューラルネットワークの一種となる。主にコンピュータビジョンのタスクで使用され、画像内の各ピクセルを異なるクラスやカテゴリに関連付けることができるため、多くのアプリケーションで重要な役割を果たしている。ここでは、このセグメンテーションネットワークの概要と様々なアルゴリズムにおける実装について述べている。
画像情報のラベル付けは、後述する様に様々な機械学習のアプローチで実現できる。今回は、それら機械学習のアプローチとルールベースのアプローチである制約充足によるアプローチの融合について考えてみたいと思う。これらのアプローチは自然言語処理等を用いたテキストデータのラベル付け等にも拡張できるものとなる。
サポートベクトルマシン(Support Vector Machine, SVM)は、パターン認識や機械学習の分野で広く使用される教師あり学習アルゴリズムであり、基本的にはデータを2つのクラスに分類するための境界面(識別面)を見つけることを目的としている。SVMの目的は、特徴ベクトル空間上でクラス間の最適な分離超平面を見つけることであり、この分離超平面は、特徴空間上のデータ点との最大マージンを持つように決定されるものとなる。マージンは、分離超平面と最も近いデータ点(サポートベクトル)との距離として定義され、SVMでは、マージン最大化の問題を解くことで最適な分離超平面を見つけることができる。
ここではこのサポートベクトルマシンの様々な実用例とそれらのpythonによる実装について述べる。
- マックスマージンアプローチの概要とアルゴリズム及び実装例
マックスマージンアプローチ(Max-Margin Approach)は、特にサポートベクターマシン(SVM)などの機械学習アルゴリズムで用いられる概念で、分類問題において最適な境界(ハイパープレーン)を決定するための手法で、このアプローチの目的は、異なるクラスのデータポイント間のマージン(境界線と最も近いデータポイントとの距離)を最大化することとなる。
LightGBMは、Microsoftが開発したGradient Boosting Machine(GBM)のフレームワークであり、大規模なデータセットに対して高速かつ高精度なモデルを構築できるように設計されている機械学習のツールとなる。ここではpyhton、R、Clojureでの実装について述べる。
一般化線形モデル(Generalized Linear Model, GLM)は、統計モデリングや機械学習の手法の一つであり、応答変数(目的変数)と説明変数(特徴量)の間の関係を確率的にモデリングするために使用されるものとなる。ここでは、この一般化線型モデルの概要と各種言語(python、R、Clojure)による実装について述べる。
時系列データとは、株価や気温、トラフィック量などの時間の経過に応じて値が変化するデータのことを呼ぶ。この時系列データに対して機械学習を適用することで、大量のデータを学習し、未知のデータに対する予測を行うことで、ビジネスの意思決定やリスク管理などに役立てることができる。ここではpythonとRを用いた時系列データの実装について述べている。
時系列データとは、株価や気温、トラフィック量などの時間の経過に応じて値が変化するデータのことを呼ぶ。この時系列データに対して機械学習を適用することで、大量のデータを学習し、未知のデータに対する予測を行うことで、ビジネスの意思決定やリスク管理などに役立てることができる。今回はそれらのアプローチの中で状態空間モデルを中心に述べる。
カルマンフィルタスムーザー(Kalman Filter Smoother)は、カルマンフィルタリングの一種であり、時系列データの状態推定を改善するために使用される手法となる。この手法では通常、動的なシステムの状態をモデル化し、観測データと組み合わせて、より精密な状態推定を行っている。
“隠れマルコフモデルの概要と各種応用事例および実装例“で述べている隠れマルコフモデル(Hidden Markov Model, HMM)と”状態空間モデルの概要とRとPythonを用いた時系列データの解析の実装例“で述べている状態空間モデル(State Space Model, SSM)は、時間的な変化や系列データのモデリングに使用される統計モデルだが、異なるアプローチを持ったものとなる。以下に、それらの主な相違点について述べる。
ダイナミック線形モデル(Dynamic Linear Model, DLM)は、時間的な変動を考慮した統計的モデリングの一形態であり、このモデルは、時系列データや時間に依存するデータの解析に使用されるものとなる。ダイナミック線形モデルは、線形状態空間モデルとも呼ばれる。
制約ベースの構造学習は、グラフィカルモデル(ベイジアンネットワークやマルコフランダムフィールドなど)において、特定の構造制約を導入してモデルの学習を行う手法であり、これにより、事前の知識やドメイン知識をモデルに組み込むことができるアプローチとなる。
BIC(ベイズ情報規準)やBDe(ベイジアン情報規準)などのスコアベースの構造学習手法は、統計モデルの複雑性とデータの適合度を組み合わせてモデルの良さを評価し、最適なモデル構造を選択するために使用されるものとなる。これらの手法は主にベイジアン統計学に基づいており、モデル選択のための情報規準として広く利用されている。
ベイジアンネットワークのサンプリングは、事後分布からのランダムサンプル生成を通じて、未知の変数やパラメータの確率的な挙動をモデル化するもので、サンプリングは、ベイズ統計学や確率的プログラミングにおいて重要な手法であり、ベイジアンネットワークの事後分布の推定や不確実性の評価に利用される手法となる。
動的ベイジアンネットワーク(DBN)は、時間の経過とともに変化する不確かさをモデリングするためのベイジアンネットワークの一種となる。変分ベイズ法は、複雑な確率的モデルの推論を行うための統計的手法の一つであり、不確かな情報に基づいて事後分布を推定することが可能な手法となる。
変分オートエンコーダ(Variational Autoencoder, VAE)は、生成モデルの一種であり、データの潜在表現を学習するためのニューラルネットワークアーキテクチャであり、VAEは、データの確率分布をモデル化し、その中からサンプリングすることによって、潜在表現を学習するものとなる。以下にVAEの概要について述べる。
Diffusion Models(拡散モデル)は、画像生成やデータ修復などのタスクにおいて優れた性能を示す生成モデルの一種となる。これらのモデルは、元のデータを一連のステップで段階的に「拡散」させることによって生成を行っている。
DDIM(Diffusion Denoising Score Matching)は、画像のノイズを除去するための手法の1つで、ノイズを除去するために拡散(diffusion)プロセスを利用し、スコアマッチング(score matching)という統計的手法を組み合わせたアプローチとなる。この手法では、まず入力画像にランダムなノイズを加えたノイズ画像を生成し、次に、これらのノイズ画像を入力として拡散プロセスを適用し、画像の構造を滑らかにすることでノイズを除去する。そして、スコアマッチングを使用して、ノイズを除去した画像の確率密度関数(PDF)を学習する。スコアマッチングでは、ノイズを除去した画像の勾配(スコア)と真のデータ分布の勾配との差を最小化することで、真のデータ分布を推定し、これにより、入力画像の真の構造をより正確に復元することができる。
Denoising Diffusion Probabilistic Models(DDPM)は、画像生成やデータ補完などのタスクに使用される確率モデルであり、確率的な生成過程を用いて、画像やデータの分布をモデル化するものとなる。
非最大値抑制(Non-Maximum Suppression、NMS)は、物体検出などのコンピュータビジョンのタスクに使用されるアルゴリズムで、主に、複数の重なり合ったバウンディングボックスや検出ウィンドウから最も信頼性の高いものを選択するために利用されるものとなる。
Stable Diffusionは、機械学習と生成モデルの分野で使われる手法の1つであり、画像や音声などの生成モデルとして知られる”Diffusion Models(拡散モデル)の概要とアルゴリズム及び実装例について“で述べているDiffusion Modelsの拡張となる。Diffusion Modelsは、画像の生成や修復において高い性能を示すことが知られており、Stable Diffusionは、これをさらに発展させ、より高品質で安定した生成を可能にする。
ベイジアンニューラルネットワーク(BNN)は、確率論的な要素をニューラルネットワークに統合するアーキテクチャであり、通常のニューラルネットワークが確定論的であるのに対し、BNNはベイズ統計に基づいて確率的なモデルを構築するものとなる。これにより、モデルが不確実性を考慮できるようになり、さまざまな機械学習タスクで応用されている。
ダイナミックベイジアンネットワーク(Dynamic Bayesian Network、DBN)は、ベイジアンネットワーク(Bayesian Network、BN)の一種であり、時間的な変化や系列データのモデリングに用いられる確率的グラフィカルモデルの一種となる。DBNは時系列データや動的なデータに対して強力なツールであり、様々な分野で応用されている。
グラフ比較は、データ構造間の類似性や差異を分析し、ネットワーク解析やバイオインフォマティクス、化学構造の分析、機械学習などで活用される手法となる。これにより、構造や関係性を深く理解し、異常検出や特徴抽出に役立てることが可能となる。以下にグラフ比較のアプローチの中でコスト法やハンガリアン法について述べる。
SNAPは、Stanford大学のコンピュータサイエンス研究室で開発されたオープンソースのソフトウェアライブラリであり、ソーシャルネットワーク分析、グラフ理論、コンピュータネットワーク分析など、さまざまなネットワーク関連の研究に使用されるツールとリソースを提供しているものとなる。
CDLib(Community Discovery Library)は、コミュニティ検出アルゴリズムを提供するPythonライブラリであり、グラフデータにおけるコミュニティ構造を特定するためのさまざまなアルゴリズムを提供し、研究者やデータサイエンティストが異なるコミュニティ検出タスクに対処できるようサポートするものとなる。
MODULARは、複雑なネットワークの多目的最適化問題を解決するための計算機科学およびネットワーク科学の研究領域で使用される手法やツールの1つであり、このアプローチは、ネットワークの構造とダイナミクスを同時に最適化するために設計されており、異なる目的関数(多目的最適化)を考慮に入れたものとなっている。
Louvain法(またはLouvainアルゴリズム)は、ネットワーク内のコミュニティ(クラスター)を特定するための効果的なグラフクラスタリングアルゴリズムの一つであり、このアルゴリズムは、ネットワークのノードとエッジを基に、ノードをコミュニティに分割するものとなる。Louvain法は、コミュニティの構造を特定するためにモジュラリティと呼ばれる尺度を最大化するアプローチを採用している。
Infomap(Information-Theoretic Modularity)は、コミュニティ検出アルゴリズムの一つで、ネットワーク内のコミュニティ(モジュール)を特定するために使用されるものとなる。Infomapは情報理論に基づいており、ネットワーク内の情報のフローと構造を最適化することに焦点を当てている。
Copra(Community Detection using Partial Memberships)は、コミュニティ検出のためのアルゴリズムおよびツールの1つであり、複雑なネットワーク内でのコミュニティの検出と特定のノードが複数のコミュニティに属することを考慮に入れたアルゴリズムとなる。Copraは、部分的なコミュニティメンバーシップ情報を使用して、各ノードが複数のコミュニティに所属することができるという現実的なシナリオに適している。
IsoRankNは、ネットワークアラインメント(Network Alignment)のためのアルゴリズムの一つで、ネットワークアラインメントは、異なるネットワーク間の対応する頂点のマッピングを見つける問題であり、IsoRankNはこの課題に対する効果的な解法の一つとなる。IsoRankNは、IsoRankアルゴリズムの改良版であり、異なるネットワーク間での頂点の対応付けを高精度かつ効率的に行う。IsoRankNは、異なるネットワークの構造や特性を考慮して頂点をマッピングし、異なるネットワークにおける相似性を保持することを目指している。
ワイアット・ミラー・ターマンアルゴリズム(Weisfeiler-Lehman Algorithm、W-Lアルゴリズム)は、グラフ同型性テストのためのアルゴリズムであり、主に、与えられた2つのグラフが同型かどうかを判断するために使用されるものとなる。
時間と共に変化するグラフデータを解析する手法は、ソーシャルネットワーク分析、ウェブトラフィック分析、バイオインフォマティクス、金融ネットワークモデリング、交通システム解析など、さまざまなアプリケーションに適用されている。ここではこの技術の概要とアルゴリズム及び実装例について述べている。
スナップショット解析(Snapshot Analysis)は、データの異なる時間点でのスナップショット(瞬間のデータスナップショット)を使用して、時間的な変化を考慮に入れたデータ解析の手法となる。この手法は、時間に関する情報を持つデータセットを分析し、そのデータの時間的なパターン、トレンド、および変化を理解するのに役立ち、グラフデータ解析と組み合わせることで、ネットワークや関係性データの時間的な変化をより深く理解することができるようになる。ここでは、このアプローチの概要とアルゴリズム及び実装例について述べている。
ダイナミックコミュニティ分析(Dynamic Community Detection)は、時間に関連する情報を持つネットワーク(ダイナミックネットワーク)内で、コミュニティ(モジュールまたはクラスタ)の時間的な変化を追跡および解析するための手法となる。通常、ノードとエッジが時間に関連した情報を持つグラフデータ(ダイナミックグラフ)を対象としており、この手法は、さまざまな分野で応用され、例えばソーシャルネットワーク分析、バイオインフォマティクス、インターネットトラフィックモニタリング、金融ネットワーク分析などで利用されている。
ダイナミック中心性指標(Dynamic Centrality Metrics)は、時間的な変化を考慮に入れたグラフデータ解析の一種であり、通常の中心性指標(例: 次数中心性、媒介中心性、固有ベクトル中心性など)は、静的なネットワークに適しており、ネットワーク内のノードの重要性を単一のスナップショットで評価するものとなる。しかし、実際のネットワークは時間に関連する要素を持つことが多いため、ネットワークの時間的な変化を考慮することが重要となる。
ダイナミックモジュール検出は、時間的な変化を考慮に入れたグラフデータ解析の手法の一つであり、この手法は、ダイナミックネットワーク内でコミュニティ(モジュール)の変化を追跡し、異なる時間スナップショットでのコミュニティ構造を特定するものとなる。ここではダイナミックモジュール検出に関する詳細とその実装例についての情報を示す。
ダイナミックグラフ埋め込み(Dynamic Graph Embedding)は、時間的な変化を考慮に入れるグラフデータ解析のための強力な手法となる。このアプローチでは、グラフデータが時間に沿って変化する場合、ノードやエッジの表現を時間軸上で持つことを目的としている。
ネットワークアライメントは、異なるネットワークやグラフ間で類似性を見つけ、それらをマッピングし合わせる技術であり、時間的な変化を考慮に入れるグラフデータ解析にネットワークアライメントを適用することで、異なる時間スナップショットのグラフを対応付け、その変化を理解することが可能とするものとなる。
時間予測モデルを用いた時間的な変化を考慮に入れるグラフデータ解析は、グラフデータ内の時間的なパターン、トレンド、予測を理解するために使用される。ここではこのアプローチについての詳細について述べる。
大規模グラフデータのサブサンプリングは、グラフの一部をランダムに選択することで、データのサイズを削減し、計算およびメモリの使用量を制御するもので、大規模なグラフデータセットを扱う際に、計算効率を向上させるためのテクニックの一つとなる。ここでは、大規模グラフデータのサブサンプリングに関するいくつかのポイントとテクニックについて述べる。
ダイナミックファクターモデル(Dynamic Factor Model, DFM)は、多変量時系列データの解析に用いられる統計モデルの一つであり、複数の時系列変数を共通の要因(ファクター)と個別の要因(スペシフィック要因)に分解することにより、データの変動を説明するものとなる。ここではこのDFMに対して、様々なアルゴリズムと適用事例およびRとPythonによる実装について述べている。
ベイズ構造時系列モデル(Bayesian Structural Time Series Model; BSTS)は、時間とともに変化する現象をモデル化する統計モデルの一種であり、予測や因果推論を目的として利用されるものとなる。ここではこのBSTSに関しての概要と様々な応用事例及び実装例について述べている。
ベクトル自己回帰モデル(Vector Autoregression Model, VARモデル)は、統計学や経済学などの分野で使用される時間系列データのモデリング手法の一つです。VARモデルは、複数の変数が相互に影響し合う場合に適用されるモデルとなる。一般的な自己回帰モデル(Autoregression Model)は、ある変数の値をその過去の値の線形結合として表現するモデルで、VARモデルはこのアイディアを複数の変数に拡張したものとなり、複数の変数の過去の値を使って現在の値を予測するモデルとなる。
オンライン学習(Online Learning)は、データが逐次的に到着する状況下で、モデルを逐次的に更新して学習する手法であり、通常の機械学習で行われるバッチ学習とは異なり、新しいデータが到着するたびにモデルが更新されるアルゴリズムであることが特徴となる。ここでは、このオンラン学習に関して様々なアルゴリズムと適用事例およびpythonによる実装例について述べている。
オンライン予測(Online Prediction)は、データが逐次的に到着する状況下で、モデルを使用してリアルタイムに予測を行う手法となる。”オンライン学習の概要と各種アルゴリズム、適用事例と具体的な実装“で述べたオンライン学習は、モデルの学習は逐次行うが、モデルの適用の即時性は明確に定義されていないのに対して、オンライン予測は、新たなデータが到着した時点で即座に予測を行い、その結果を利用することが特徴となる。
ここではこのオンライン予測に関しては様々な適用事例と具体的な実装例について述べている。
ロバスト主成分分析(Robust Principal Component Analysis、RPCA)は、データの中から基底を見つけ出すための手法であり、外れ値やノイズが含まれているようなデータに対しても頑健(ロバスト)に動作することを特徴としている。ここでは、このRPCAに関して様々な適用事例とpyhtonによる具体的な実装について述べている。
多次元尺度構成法(MDS)は、多変量データを可視化するための統計的手法の一つであり、データ間の距離または類似性を保持しながら、データポイントを低次元空間(通常は2次元または3次元)に配置する方法を提供するものとなる。この手法は、高次元データを理解しやすい低次元プロットに変換するために使用され、データの特徴やクラスタリングを可視化するのに役立つ。
- メトリックMDSの概要とアルゴリズム及び実装例
メトリックMDS(Metric Multidimensional Scaling)は、多次元データを低次元空間に埋め込み、データ間の類似性や距離を可視化するための手法であり、データ間の距離(または類似性)が与えられたとき、それを可能な限り忠実に表現するように点を配置する低次元空間を見つけるものとなる。
- 非メトリックMDSの概要とアルゴリズム及び実装例
非メトリックMDSは、データの類似性や非類似性(しばしば「順序データ」や「ランキング」として与えられる)を基に、データを低次元空間に埋め込む手法となる。”メトリックMDSの概要とアルゴリズム及び実装例“で述べているメトリックMDSが距離(例えばユークリッド距離)の絶対的な値を保持しようとするのに対し、非メトリックMDSはデータの「順序関係」を優先して保持するものとなる。
- 自己組織化マップ(SOM)の概要とアルゴリズム及び実装例
自己組織化マップ(Self-Organizing Map, SOM)は、人工ニューラルネットワークの一種であり、高次元データを低次元(通常は2次元)の空間にマッピングして視覚化するための手法となる。SOMは、教師なし学習アルゴリズムを用いて、データの特徴を保持しつつ、類似するデータを近接させるようにマップを構築している。この手法は、データのクラスタリングや次元削減、可視化に役立つ。
- Shepard’s methodの概要とアルゴリズム及び実装例
Shepard’s methodは、非線形次元削減手法の一つで、特に “多次元尺度構成法(MDS, Multidimensional Scaling)についてでも述べているMDS の一部として利用されるもので、主に、データ間の距離または類似度を低次元空間に効果的にマッピングするために用いられるものとなる。Shepardの方法は、非線形の距離縮約法として特徴づけられ、特にデータの多様な関係をうまく表現することが可能なアプローチとなる。
- SMACOF(Scaling by Majorizing a Complex Function)の概要とアルゴリズム及び実装例
SMACOFは、”多次元尺度構成法(MDS, Multidimensional Scaling)についてでも述べているMDSの一種で、データの距離情報をもとに低次元空間にデータを配置するアルゴリズムであり、特に、非線形なデータや近似的な距離情報を扱う際に効果的なアプローチとなる。
- ISOMAP(Isometric Mapping)の概要とアルゴリズム及び実装例
ISOMAP(Isometric Mapping)は、非線形次元削減手法の一つで、高次元データを低次元空間に埋め込むアルゴリズムとなる。特に、データが曲面状に分布しているような「多様体構造(manifold structure)」を持つ場合に有効で、2000年に Tenenbaum, De Silva, and Langford によって提案されている。
- 非メトリックMDSでのバイアス修正法(Bias Correction Method)の概要とアルゴリズム及び実装例
非メトリック多次元尺度法(Non-Metric Multidimensional Scaling, NMS)におけるバイアス修正法(Bias Correction Method)は、距離行列から低次元空間へのマッピングの精度を向上させるための技術であり、この方法は、通常の”メトリックMDSの概要とアルゴリズム及び実装例“でも述べているメトリックMDSではうまく表現できないようなデータの非線形性や構造的なバイアスに対処するために使用されるものとなる。
t-SNEは、高次元データを低次元に埋め込む非線形次元削減アルゴリズムの一つであり、t-SNEは主にデータの可視化やクラスタリングなどのタスクに使用され、特に高次元データの非線形構造を保持する能力が強みな手法となる。t-SNEの主なアイデアは、高次元データの類似性を低次元空間に反映させることとなる。
LLE(Locally Linear Embedding)は、高次元データを低次元に埋め込む非線形次元削減アルゴリズムの一つであり、データが局所的に線形であると仮定し、データの局所的な構造を保持しながら次元を削減するものとなる。これは、主にクラスタリング、データの可視化、特徴抽出などのタスクに使用されている。
UMAPは、高次元データの非線形次元削減手法であり、データの構造を保持しながら低次元に埋め込むことを目的としたもので、”t-SNE(t-distributed Stochastic Neighbor Embedding)について“で述べているt-SNEと同様に可視化やクラスタリングに使用されるが、いくつかの点で異なるアプローチを採用している手法となる。
自然言語処理(Natural Language Processing, NLP)は、人間の自然言語をコンピュータで処理するための技術の総称となる。NLPは、テキストデータを理解し、解釈し、生成するための方法やアルゴリズムを開発することが目標となる。
ここではこの自然言語処理に用いられる各種アルゴリズムとそれらを実装したライブラリやプラットフォーム、および各種適用事例(文書分類、固有名認識、要約、言語モデリング、感情分析、質問応答)での具体的な実装例について述べている。
自然言語処理(NLP)の前処理は、テキストデータを機械学習モデルや解析アルゴリズムに適した形に整えるプロセスとなる。機械学習モデルや解析アルゴリズムは、全てのデータに対しても高いパフォーマンスを確保できるわけではない為、適切な前処理の選択はNLPタスクを成功させるための重要な要件となる。以下に代表的なNLPの前処理方法について述べる。これらの手法は、データやタスクの特性を踏まえた上で試行錯誤的に実行されることが一般的となる。
自然言語処理(NLP)を用いた文章の評価は、テキストデータの品質や特性を定量的または定性的に評価するプロセスであり、さまざまなNLPタスクやアプリケーションに関連した手法となる。ここでは様々な文書評価の宗法について述べている。
自然言語処理(NLP)を用いた語彙学習は、プログラムが言語の語彙を理解し、言葉の意味や文脈を学習するプロセスで、語彙学習は、NLPタスクの中核であり、テキストデータから単語やフレーズの意味を抽出し、モデルが自然言語をより効果的に理解できるようにするための重要なステップとなる。ここでは、この語彙学習の概要、様々なアルゴリズム及び実装例について述べている。
機械学習において多義語(homonyms)への対応は、自然言語処理(NLP)や情報検索などのタスクにおいて重要な課題の一つとなる。多義語は同じ単語が異なる文脈で異なる意味を持つ場合を指し、多義性の問題を解決するために様々なアプローチが存在している。
機械学習における多言語対応(Multilingual NLP)とは、複数の言語に対応する自然言語処理(NLP)モデルやアプリケーションを開発するための分野であり、機械学習と自然言語処理の分野において重要な課題であり、異なる文化と言語コミュニティにサービスを提供するための要素となる。
言語検出(Language Detection)アルゴリズムは、与えられたテキストがどの言語で書かれているかを自動的に判定するための手法であり、言語検出は、多言語処理、自然言語処理、ウェブコンテンツの分類、機械翻訳の前処理など、さまざまなアプリケーションで使用されるものとなる。ここでは一般的な言語検出アルゴリズムと手法について述べる。
機械学習における翻訳モデルは、自然言語処理(NLP)の分野で広く使用されており、ある言語から別の言語へのテキスト翻訳を自動化するために設計されているものとなる。これらのモデルは、文の構造と意味を理解し、翻訳を行うために統計的手法や深層学習アーキテクチャを使用している。
GNMT(Google Neural Machine Translation)は、Googleが開発したニューラル機械翻訳システムであり、ニューラルネットワークを使用して、複数の言語間で自然な翻訳を行うことができるものとなる。
OpenNMT(Open-Source Neural Machine Translation)は、ニューラル機械翻訳のためのオープンソースプラットフォームであり、翻訳モデルの構築、トレーニング、評価、そしてデプロイメントをサポートしているものとなる。
多言語エンベディング(Multilingual Embeddings)は、異なる言語のテキストデータをベクトル空間に埋め込む技術となる。この埋め込みは、テキストデータ内の言語情報を数値ベクトルとして表現し、異なる言語のテキストを同じベクトル空間内に配置することができ、多言語エンベディングは、多言語処理、翻訳、クラス分類、感情分析などの自然言語処理(NLP)タスクで有用なアプローチとなる。
Leskアルゴリズムは、自然言語処理の分野で、単語の意味を判定するための手法の一つであり、特に、単語の多義性解消(Word Sense Disambiguation, WSD)に使用されるアプローチとなる。多義性解消は、一つの単語が複数の異なる意味(sense)を持つ場合に、文脈に応じて正しい意味を選択する問題となる。
エイヒンホルツアルゴリズム(Aho-Hopcroft-Ullman Algorithm)は、文字列検索やパターンマッチングなどの文字列処理問題において、効率的なアルゴリズムとして知られているものとなる。このアルゴリズムは、文字列処理における基本的なデータ構造であるトライ(Trie)と有限オートマトン(Finite Automaton)を組み合わせて、文字列のパターン検索を効率的に行い、主に文字列マッチングに用いられるが、コンパイラやテキスト検索エンジンなど幅広い分野で応用されているものとなる。
サブワードレベルのトークン化は、テキストデータを単語よりも小さなサブワード(部分単語)に分割する自然言語処理(NLP)のアプローチとなる。これは、文の意味を理解しやすくし、語彙の制約を緩和するために使用される。サブワードレベルのトークン化を行う方法にはいくつかのアプローチがある。
自動要約技術は、大きなテキスト文書や文章を短く、要点を押さえた形にまとめるための技術となり、情報の圧縮や要約された情報の理解を容易にするため、情報検索、情報処理、自然言語処理、機械学習などの分野で広く利用されているものとなる。ここでは、この自動要約技術の概要、様々なアルゴリズムおよび実装例について述べている。
教育分野やオンライン学習プラットフォームなどのさまざまな領域で、自然言語処理(NLP)を活用したユーザーにカスタマイズされた学習支援が提供されている。ここでは、それらに用いられる様々なアルゴリズムと具体的な実装について述べている。
自然言語処理(NLP)を用いたオンラインディスカッションのモニタリングと支援は、オンラインコミュニティ、フォーラム、ソーシャルメディアプラットフォームなどで活用され、ユーザーエクスペリエンスの向上、適切なコミュニケーションの促進、問題の早期検出などに役立つアプローチとなる。ここでは、この自然言語処理(NLP)を用いたオンラインディスカッションのモニタリングと支援について様々なアルゴリズムと実装について述べる。
関係データ学習(Relational Data Learning)は、関係データ(例:グラフ、ネットワーク、表形式のデータなど)を対象とした機械学習の手法となる。従来の機械学習は通常、個々のインスタンス(例:ベクトルや行列)に対してのみ適用されていたが、関係データ学習は複数のインスタンスとその間の関係性を考慮するものとなる。
ここではこの関係データ学習に対して、様々な適用事例と、スペクトラルクラスタリング、行列分解、テンソル分解、確率的ブロックモデル、グラフニューラルネットワーク、グラフ畳み込みネットワーク、グラフ埋め込み、メタパスウォーク等のアルゴリズムでの具体的な実装について述べている。
構造学習(Structural Learning)は、機械学習の一分野であり、データの構造や関係性を学習する手法を指し、通常、教師なし学習や半教師あり学習の枠組みで使用されるものとなる。構造学習は、データの中に存在するパターン、関係性、または構造を特定し、それをモデル化し、データの背後にある隠れた構造を明らかにすることを目的としている。構造学習は、グラフ構造、木構造、ネットワーク構造など、さまざまなタイプのデータ構造を対象としている。
ここでは、この構造学習に関して様々な適用事例と具体的な実装例について述べている。
グラフニューラルネットワーク(Graph Neural Network, GNN)は、グラフ構造を持つデータに対するニューラルネットワークの一種であり、グラフ構造を持つデータとは、要素間の関係を表現するために、頂点(またはノード)と、頂点間を結ぶエッジ(またはリンク)から構成されるグラフと呼ばれるデータ構造を使用して構築されたデータのことを指す。グラフ構造のデータの例としては、ソーシャルネットワーク、道路網、化学分子の構造、知識グラフなどがある。
ここでは、このGNNに関しての概要と様々な実施例およびPythonによる実装例について述べている。
KBGAT(Knowledge-based Graph Attention Network)は、知識グラフ(Knowledge Graph)を扱うために特化されたグラフニューラルネットワーク(GNN)の一種で、特に知識グラフのノード間の関係を効率的にモデル化するための手法となる。KBGATは、従来のGAT(Graph Attention Network)を基にして、知識グラフの特殊な構造を活かして設計されており、以下のような特徴がある。
Deep Graph Infomax (DGI) は、グラフデータに対する無教師学習手法の一つで、ノード表現を学習するために 情報理論 に基づいた目標を設定するアプローチとなる。DGIは、グラフの局所的な特徴(ノードレベル)とグローバルな特徴(グラフレベル)を一致させることで、高品質なノード埋め込みを得ることを目的としている。
Edge-GNN (Edge Graph Neural Network) は、グラフ構造におけるエッジ(辺)に焦点を当てたニューラルネットワークアーキテクチャで、エッジの特徴や重みを活用して、エッジレベルやグラフ全体のタスクを処理することを目的としたものとなる。Edge-GNNは、通常のGNNと異なり、ノード(頂点) ではなく エッジ(辺) に主な焦点を当てたモデルとなる。多くのグラフ解析タスク(例: 関係予測やリンク予測)では、ノード間の接続(エッジ)に関する情報が重要であるため、Edge-GNNは、次のような特性を持つ。
Temporal Graph Neural Networks(TGNN)は、時間情報を考慮したグラフ構造データを処理するためのディープラーニング手法で、静的なグラフニューラルネットワーク(GNN)では時間的な変化を扱えないため、時間依存性や時系列データを活用したグラフ分析が可能になものとなる。TGNNの特徴としては、ノード、エッジ、またはグラフ全体の時間的変化をモデル化し、イベント発生順序や時間依存性の影響を考慮可能なこと、構造が時間とともに変化する動的グラフ(Dynamic Graph)を扱うのに適しており、たとえば、ソーシャルネットワークにおける人々の関係の変化や通信ネットワークのトラフィック変化などを処理可能なことなどがある。
グラフ畳み込みニューラルネットワーク(Graph Convolutional Neural Networks, GCN)は、グラフ構造を持つデータに対する畳み込み演算を可能にするニューラルネットワークの一種であり、通常の畳み込みニューラルネットワーク(CNN)は、画像データなどの格子状のデータに対して効果的なものに対して、GCNは、グラフデータやネットワークデータのような非常に複雑な構造を持つ非格子状のデータに対する深層学習の手法として開発されたものとなる。
グラフ埋め込み(Graph Embedding)は、グラフ構造を低次元のベクトル空間にマッピングすることで、グラフのノードやエッジを密な数値ベクトルで表現して、機械学習アルゴリズムによって処理したグラフ理論と機械学習を組み合わせたアプローチとなる。グラフ埋め込みの目的は、グラフ構造の情報を保持しながら、各ノードを密なベクトルで表現することであり、この表現を使うことでさまざまな情報を扱うことが可能となる。また、従来エッジによって表されていたノード間の距離をベクトル間の距離とすることで、計算コストを下げ、並列・分散アルゴリズムを適用した形で、ノード分類、ノードクラスタリング、グラフ可視化、リンク予測などりタスクに利用できるようになる。
エンコーダー/デコーダーモデルは、深層学習における重要なアーキテクチャの1つで、このモデルは、入力シーケンスを固定長のベクトル表現にエンコードし、その後、その表現を使用してターゲットシーケンスを生成するためにデコードする構造となっている。グラフニューラルネットワーク(Graph Neural Networks, GNN)におけるエンコーダーとデコーダーモデルは、グラフデータから特徴表現(エンベディング)を学習し、その表現を用いてグラフ上のさまざまなタスクを解決するための枠組みとなる。
動的グラフのエンベディング(Dynamic Graph Embedding)は、動的なネットワークや時変グラフなどの時間的変化を持つグラフデータを解析するための手法となる。従来の静的グラフに対するエンベディングは、ノードの固定された表現を得ることに焦点を当てたものだが、動的グラフのエンベディングでは、グラフの時間的変化に対応した表現を得ることが目的となる。
時空間グラフ畳み込みネットワーク(STGCN: Spatio-Temporal Graph Convolutional Network)は、時系列データがノードとエッジで構成されるグラフ上にある時系列データを対象とした畳み込みであり、リカレントニューラルネットワーク(Recurrent Neural Network,RNN)の代わりに時間変化の予測に用いられるモデルとなる。これは、交通流や気象データなどのように、地理的な位置や時間的な変化が重要なデータに対して効果的なアプローチとなる。
GNN(Graph Neural Networks)は、グラフ構造データを扱うためのニューラルネットワークであり、ノードとエッジ(頂点と辺)の情報を利用して、グラフデータ内のパターンや構造を捉え、ソーシャルネットワーク分析、化学構造の予測、推薦システム、グラフベースの異常検知などに適用される手法となる。
グラフニューラルネットワーク(GNN)を用いた反実仮想学習(counterfactual learning)は、グラフ構造を持つデータに対して「もし〜だったら」という仮定のもとで、異なる条件下での結果を推論する手法となる。反実仮想学習は因果推論と密接に関連しており、特定の介入や変更が結果に与える影響を理解することを目的としている。
メタパスは、異種グラフ内の異なるエッジタイプやノードタイプ間のパターンを表現するためのグラフパターンであり、異種グラフにおいて、異なるエッジタイプを扱うためには、それぞれのエッジタイプを表現するメタパスを適切に定義する必要がある。以下に、メタパスを定義して非同質グラフの異なるエッジタイプを扱う方法の一般的な手順を示す。
Metapath2Vecは、グラフデータ上でのノードの表現学習に使用される手法の1つであり、この手法は、ノードの系列データから、各ノードの密なベクトル表現を学習するものとなる。Metapath2Vecは、特に異種グラフ(heterogeneous graph)やメタパス(metapath)と呼ばれるグラフ構造を扱う場合に有用なアプローチとなる。
HIN2Vec-GANは、グラフ上の関係を学習するために使われる技術の一つで、具体的には、異種情報ネットワーク(Heterogeneous Information Network, HIN)上で埋め込みを学習するための手法として開発されたものとなる。HINは、異なる種類のノードとエッジを持つグラフ構造で、複雑な関係を持つデータを表現するために使われている。
HIN2Vec-PCAは、異種情報ネットワーク(HIN)から特徴を抽出するために、HIN2Vecと主成分分析(PCA)を組み合わせた手法となる。
LPA(Label Propagation Algorithm)は、グラフベースの半教師あり学習アルゴリズムの一種であり、このアルゴリズムは、グラフ上のラベル付きノードからラベルなしノードへのラベルの伝播を通じて、ラベルなしデータにラベルを付与することを目的としている。LPAは、ラベル伝播法としても知られている。
HARP(Hierarchical Attention Relational Graph Convolutional Network for Poverty Prediction)は、貧困予測のための階層的アテンション関係グラフ畳み込みネットワークとなる。この手法は、グラフ構造を持つデータ(例:都市の人口統計、地理的特徴、社会経済指標など)を使用して、貧困の予測を行っている。
ランダムウォーク(Random Walk)は、グラフ理論や確率論で用いられる基本的な概念で、グラフ上のランダムな移動パターンを表現し、グラフ内の構造や特性を理解するのに役立つ手法となる。
機械学習におけるメッセージパッシングは、グラフ構造を持つデータや問題に対する効果的なアプローチで、特に、グラフニューラルネットワーク(Graph Neural Networks, GNN)などの手法で広く使用されている手法となる。
ChebNet(Chebyshev ネットワーク)は、グラフニューラルネットワーク(Graph Neural Network, GNN)の一種であり、主にグラフ構造データに対する畳み込み操作を実行するための手法の一つとなる。ChebNetは、シグナル処理で使用されるシェビシェフ多項式(Chebyshev polynomials)を利用して、グラフ上での畳み込み演算を近似的に実装している。
DCNNは、画像やグラフなどのデータ構造に対する”CNNの概要とアルゴリズム及び実装例について“でも述べている畳み込みニューラルネットワーク (CNN) の一種で、”グラフ畳み込みニューラルネットワーク(Graph Convolutional Neural Networks, GCN)の概要とアルゴリズム及び実装例について“で述べているGCNの発展系となる。通常のCNNは、データがグリッド状の構造を持つ場合に効果的だが、グラフや非定型データに対しては直接適用することが難しいという課題があり、GCNは、グラフデータやネットワークデータのような非常に複雑な構造を持つ非格子状のデータに対する深層学習の手法として開発されたものだが、DCNNは、このGCNに対して、”Diffusion Models(拡散モデル)の概要とアルゴリズム及び実装例について“で述べているDiffusion Modelの概念を適用したものとなる。
Graph Attention Network(GAT)は、グラフ構造に対する注意メカニズムを使用してノードの表現を学習する深層学習モデルとなる。GATは、異なるノード間の関係や接続パターンに基づいて、各ノードの重要度を自動的に決定することが可能なアプローチとなる。
Graph Isomorphism Network (GIN)は、グラフ構造の同型性を学習するためのニューラルネットワークモデルであり、グラフ同型性の問題は、2つのグラフが同じ構造を持つかどうかを判定する問題で、多くの分野で重要なアプローチとなる。
Dynamic Graph Neural Networks(D-GNN)は、動的なグラフデータに対処するために設計されたグラフニューラルネットワーク(Graph Neural Network、GNN)の一種であり、ノードとエッジが時間に応じて変化するようなデータを扱うために設計されたものとなる。(GNNについては”グラフニューラルネットワークの概要と適用事例およびpythonによる実装例について“を参照のこと)このアプローチは、時系列データ、ソーシャルネットワークデータ、交通ネットワークデータ、生物学的ネットワークデータなど、さまざまな領域で用いられている。
テンソル分解法(Tensor Decomposition)は、高次元のテンソルデータを低ランクのテンソルに近似する手法であり、この手法は、データの次元削減や特徴抽出に使用され、機械学習やデータ解析のさまざまなアプリケーションで有用なアプローチとなる。ダイナミックモジュール検出にテンソル分解法を適用することは、時系列データや動的なデータモジュールの検出といったタスクに関連する。
MAGNAは、生物学的ネットワークにおいて、異なる種類のノード(たとえば、タンパク質や遺伝子)を対応付けるためのアルゴリズムやツールのセットであり、生物学的ネットワークマッチングは、異なるデータソースからの情報を統合し、異なる種類の生物学的実体間の関係を特定するのに役立つアプローチとなる。
TIME-SI(Time-aware Structural Identity)は、時間に関連する情報を考慮に入れてネットワーク内のノード間の構造的な対応を特定するためのアルゴリズムまたは手法の一つであり、TIME-SIは、生物学的ネットワークやソーシャルネットワークなど、さまざまなネットワークデータで使用されているものとなる。
グラフデータのDiffusion Modelsは、ネットワーク上で情報や影響がどのように広がるかをモデル化する手法であり、ソーシャルネットワークやネットワーク構造を持つデータでの影響の伝播や情報の拡散を理解し、予測するために使用されるものとなる。以下にグラフデータのDiffusion Modelsの基本的な概要について述べる。
GRAAL(Graph Algorithm for Alignment of Networks)は、生物学的ネットワークやソーシャルネットワークなど、異なるネットワークデータ間で対応付け(アライメント)を行うためのアルゴリズムであり、主に生物学的ネットワークの比較や解析に使用されるものとなる。GRAALは、ネットワーク対応付けの問題を解決し、異なるネットワーク間の共通の要素(ノードやエッジ)を特定するために設計されている。
HubAlign(Hub-based Network Alignment)は、異なるネットワーク間での対応付け(アライメント)を行うためのアルゴリズムであり、異なるネットワーク間で共通の要素(ノードやエッジ)を特定するために使用されるものとなる。これは主にバイオインフォマティクスやソーシャルネットワーク分析などの領域で活用されている。
IsoRank(Isomorphism Ranking)は、異なるネットワーク間での対応付け(アライメント)を行うためのアルゴリズムの一つであり、ネットワーク同型性(グラフ同型性)を利用して、2つの異なるネットワーク間で類似性を計算し、それに基づいてノードの対応を推定するものとなる。IsoRankは、異なるネットワーク間でのデータ統合、ネットワーク比較、バイオインフォマティクス、ソーシャルネットワーク解析などの分野で利用されている。
グラフは、グラフ構造データのモデリングと表現における柔軟性と有効性により、広く適用できる表現力豊かで強力なデータ構造であり、生物学、金融、交通、ソーシャル ネットワークなど、さまざまな分野でますます人気が高まっている。レコメンダー システムは、人工知能の最も成功した商用アプリケーションの 1 つであり、ユーザーとアイテムのインタラクションがグラフ構造データに自然に適合することができ、グラフ ニューラル ネットワーク (GNN) の適用においても大きな注目を集めている。ここではGNNを用いたレコメンダー システムについて述べる。
Lifted Relational Neural Networks(LRNN)は、関係データを扱うためのニューラルネットワークモデルの一種であり、関係データを表現し、関係推論を行うために設計されたものとなる。
Deep Graph Generative Models(DGMG)は、グラフ生成タスクに特化したディープラーニングモデルの一種で、特に複雑なグラフ構造の生成に有効なアプローチとなる。DGMGは、グラフ生成プロセスを逐次的な決定問題として扱い、グラフのノードとエッジを順番に生成している。
GraphRNNは、グラフ生成に特化したディープラーニングモデルで、特にグラフの構造を学習して新しいグラフを生成する能力に優れたものとなる。このモデルは、ノードとエッジのシーケンスを予測することでグラフ全体を生成している。
深層強化学習(DRL)によるマルチエージェントシステムの実装にはいくつかの方法がある。以下に一般的な手法について述べる。
ST-GCN(Spatio-Temporal Graph Convolutional Networks)は、動画データや時間的データを扱うために設計されたグラフ畳み込みネットワークの一種であり、グラフ構造を持つデータ(例: 隣接ノードとエッジで表現されるネットワークデータ)に対して、空間的な情報(グラフ内のノード間の関係)と時間的な情報(連続したフレームまたは時間ステップ)の両方を考慮して特徴抽出と分類を行うことができる手法となる。これは主に動画分類、動作認識、スポーツ解析などのタスクに用いられている。
DynamicTriadは、動的なグラフデータの時間的な変化をモデル化し、ノードの対応関係を予測するための手法であり、このアプローチは、動的なネットワークでの対応関係の予測やノードの時間的な変化の理解に応用されている。
HIN2Vec(Heterogeneous Information Network Embedding)は、異種情報ネットワークをベクトル空間に埋め込む手法で、異種情報ネットワークは、複数の異なる種類のノードやリンクで構成されるネットワークであり、例えばソーシャルネットワーク、推薦システム、情報検索などの分野でよく使用されるものとなる。HIN2Vecは、異種情報ネットワーク内の異なる種類のノードを効果的に表現することを目的としており、この手法は、グラフ埋め込み(Graph Embedding)と呼ばれる分野の一部であり、ノードを低次元のベクトルに埋め込むことで、ネットワーク構造やノード間の関係を保持することを目指すものとなる。
R-GCN(Relational Graph Convolutional Network)は、グラフデータ上で畳み込み演算を行うニューラルネットワークの一種となる。通常のグラフ畳み込み演算では、単一のグラフ構造を扱うが、R-GCNは異なる種類の関係(リレーション)を持つ多重グラフ(異種情報ネットワーク)に対して効果的に畳み込み演算を行っている。R-GCNは、異種情報ネットワーク内のノードの表現学習に適しており、さまざまなタスクに応用される。これは、異なる種類の関係を持つノードが多数存在する実世界のデータや問題に対応するために開発されたものとなる。
VERSE(Vector Space Representations of Graphs)は、グラフデータの埋め込みを学習するための手法の一つであり、グラフデータを低次元のベクトル空間に埋め込むことで、ノードやエッジの特徴を数値化し、機械学習アルゴリズムに適用するための表現を提供するものとなる。VERSEは特に大規模なグラフに対して高速で効果的な埋め込みを学習することができることで知られている。
GraphWaveは、グラフデータの埋め込みを学習するための手法の一つであり、グラフデータ埋め込みは、ノードやエッジの特徴を低次元のベクトルに変換する技術で、グラフデータを機械学習アルゴリズムに適用するために役立つものとなる。GraphWaveは、グラフ構造とその周辺情報を考慮して、効果的な埋め込みを学習することができる特長的なアプローチとなる。
LINE(Large-scale Information Network Embedding)は、グラフデータアルゴリズムの一種で、大規模な情報ネットワーク(グラフ)を効率的に埋め込むための手法となる。LINEは、ノード(ノードはグラフ内の個々の要素やエンティティを表します)の特徴ベクトル(埋め込み)を学習することを目的としており、これらの特徴ベクトルを使用することで、ノード間の関係や類似性をキャプチャし、さまざまなタスクに応用できるものとなる。
Node2Vecは、グラフデータのノードを効果的に埋め込むためのアルゴリズムの一つであり、Node2Vecは、Word2Vecと似たようなアイデアに基づいており、ノードの埋め込みを学習するためにランダムウォークを使用するものとなる。このアルゴリズムは、ノードの類似性や関連性を捉え、異なるグラフデータ関連のタスクに応用されている。
GraREP(Graph Random Neural Networks for Representation Learning)は、グラフ表現学習のための新しい深層学習モデルとなる。グラフ表現学習は、ノードとエッジから成るグラフ構造データから、それぞれの要素(ノードやエッジ)の表現を学習するタスクで、ソーシャルネットワーク、分子構造、コミュニケーションネットワークなど、さまざまな分野で重要な役割を果たしている。
Structural Deep Network Embedding(SDNE)は、オートエンコーダをグラフに拡張したグラフオートエンコーダーの一種となる。オートエンコーダーは、与えられたデータを潜在空間における低次元ベクトルにエンコードする教師なし学習を行うニューラルネットワークで、グラフオートエンコーダーでは、ノードの属性も利用するか、エンコーダーとデコーダーで何を使うか、何を目的関数とするかにより多くのバリエーションがある。SDNEはそれらの中で、1次の近接性と2次の近接性を同時に維持することを目的とした多層オートエンコーダー(Stacked AutoEncoder)となる。
MODAは、動的ネットワークデータにおいて、モジュール(ノードのグループ)を検出するためのアルゴリズムであり、MODAは、時間的な変化を考慮に入れ、ネットワーク内のモジュールがどのように進化するかを追跡することができるように設計されたものとなる。このアルゴリズムは、動的ネットワークの解析、コミュニティ検出、エボリューションの研究など、さまざまな応用に役立っている。
- DynamicTriadの概要とアルゴリズム及び実装例
DynamicTriad(ダイナミックトライアド)は、人々や組織、その他の要素間の関係を調査し、そのネットワーク構造や特性を理解するための手法である社会ネットワーク分析(SNA)の分野で使われるモデルの一つとなる。DynamicTriadは、”Clojureを用いたネットワーク解析(2)Glitteringを使ったグラフ中の三角の計算“でも述べている様に3つの要素で構成されるトライアド(三つ組の集合)の変化を追跡し、ネットワーク全体の進化を理解するためのツールとなる。これは、ネットワーク内の個々の関係だけでなく、グループやサブグループの動きも考慮に入れることができるため、より包括的なネットワークの分析が可能なアプローチとなる。
DANMF(Dynamic Attributed Network with Matrix Factorization)は、動的な属性情報を持つネットワークデータを対象としたグラフ埋め込みの手法の一つであり、ノードの属性情報とネットワーク構造を組み合わせて、ノードの埋め込みを学習するものとなる。この手法は、動的な属性情報が含まれる場合に特に有用で、ノードの属性が時間によって変化する場合や、異なる属性情報が異なる時間ステップで利用可能な場合に適している。
GraphSAGE(Graph Sample and Aggregated Embeddings)は、グラフデータからノードの埋め込み(ベクトル表現)を学習するためのグラフ埋め込みアルゴリズムの一つであり、ノードの局所的な隣接情報をサンプリングし、それを集約することによって、各ノードの埋め込みを効果的に学習するものとなる。このアプローチにより、大規模なグラフに対しても高性能な埋め込みを獲得することが可能となる。
Variational Graph Auto-Encoders (VGAE) は、グラフデータに対する”変分オートエンコーダ (Variational Autoencoder, VAE)の概要とアルゴリズム及び実装例について“でも述べているVAEの一種となる。
DeepWalkは、グラフデータ解析のための機械学習アルゴリズムの一つであり、特に、ノードの表現学習(Node Embedding)と呼ばれるタスクに適しており、ノードを低次元のベクトル空間に埋め込むことを目的とした手法で、ノードがグラフ内で隣接するノードと共有する情報をキャプチャし、その情報を使用してノードの埋め込みを学習するものとなる。DeepWalkは、社会的ネットワーク、ウェブページリンクグラフ、協調フィルタリングなど、さまざまなアプリケーションで利用されている。
Girvan-Newmanアルゴリズムは、グラフ理論においてネットワークのコミュニティ構造を検出するためのアルゴリズムであり、このアルゴリズムは、エッジの媒介中心性(betweenness centrality)を利用して、ネットワーク内の重要なエッジを特定し、それらのエッジを取り除くことでネットワークをコミュニティに分割するものとなる。
ベイズ深層学習は、ベイズ統計学の原則を深層学習に組み込む試みを指す。通常の深層学習では、モデルのパラメータは確率的でない値として扱われ、最適なパラメータを求めるために最適化アルゴリズムが使用されるが、ベイズ深層学習では、これらのパラメータ自体を確率分布として扱い、不確かさを考慮に入れてモデルを学習および推論することを目指すものとなる。不確かさの機械学習への適用に関しては”不確実性と機械学習技術“や”統計的学習理論の概要(数式を使わない解説)“を参照のこと。
- Black-Box Variational Inference (BBVI)の概要とアルゴリズム及び実装例について
Black-Box Variational Inference (BBVI)は、確率的プログラミングやベイジアン統計モデリングにおいて、複雑な確率モデルの事後分布を近似するための変分推論法の一種であり、変分推論は、事後分布を解析的に解くことが難しい場合に、近似的な手法を使って推論を行うものとなる。BBVIは”Black-Box”と呼ばれるのは、推論対象の確率モデルがブラックボックスとして扱われ、モデル自体の内部構造や尤度関数の形に依存せずに適用できるためであり、BBVIはモデルを確率分布の黒い箱(Black Box)として捉え、その内部構造を知らなくても推論が可能な手法と言える。
Meta-Learnersは、機械学習の領域において重要な概念の一つであり、「学習アルゴリズムを学習するアルゴリズム」として理解できるものとなる。つまり、メタラーナーは、異なるタスクやドメインに対して適応可能な学習アルゴリズムを自動的に獲得するアプローチとも言える。ここでは、このMeta-Learnersの概念と様々なアルゴリズムおよび具体的な実装について述べている。
自己教師あり学習(Self-Supervised Learning)は、機械学習の一種であり、教師あり学習の一種と考えることができる。教師あり学習では、ラベル付きのデータを使用してモデルを訓練するのに対して、自己教師あり学習では、ラベルの代わりにデータ自体を利用してモデルを訓練する手法となる。ここではこの自己教師あり学習に対して、様々なアルゴリズムと適用事例、実装例について述べている。
ナレッジグラフは、情報を関連性のあるノード(頂点)とエッジ(つながり)の集合として表現するグラフ構造であり、異なる主題やドメインの情報を結び付け、その関連性を可視化するために使用されるデータ構造となる。ここではこのナレッジグラフの自動生成に関して様々な手法での概要とpythonによる具体的な実装について述べている。
ナレッジグラフは、情報を関連性のあるノード(頂点)とエッジ(つながり)の集合として表現するグラフ構造であり、異なる主題やドメインの情報を結び付け、その関連性を可視化するために使用されるデータ構造となる。ここではこのナレッジグラフの様々な活用事例とpythonによる具体的な実装例について述べる。
有向非巡回グラフ(Directed Acyclic Graph, DAG)は、様々なタスクの自動管理、あるいはコンパイラ等の処理など様々な場面で登場するグラフデータアルゴリズムとなる。今回は、このDAGについて述べてみたいと思う。
- 一般問題解決器と適用事例、LISPとPythonによる実装例
一般問題解決器は、具体的には、問題の記述や制約条件を入力として受け取り、最適な解や有効な解を見つけるためのアルゴリズムを実行する動作をとる。これらのアルゴリズムは、問題の性質や制約に応じて異なり、一般的な問題解決手法では、数値最適化、制約充足、機械学習、探索アルゴリズムなど様々なものがある。ここでは、このGPSに関して、LISPとPythonによる実装例について述べている。
不確実性(Uncertainty)とは、将来の出来事や結果が予測しにくい、不明確な状態や情報のことを指し、我々が持つ知識や情報の限界によって引き起こされるものであり、完全な情報や確信を持つことが難しい状態を表す。不確実性を取り扱うために、確率論や統計学などの数学的手法やモデルが使われる。これらの手法は、不確実性を数値化したり、リスクを最小化したりするために重要なツールとなる。
ここではこの不確実性を扱う為の確率理論と様々な実装について述べている。
現実世界の問題を確率から解くことを考えると、予測と不確実性という視点が最も重要なものとなる。この不確実性とAI技術は密接に関連しており、AIが不確実な環境での意思決定をどのように扱うかは、AIの設計や応用において重要なテーマとなっている。不確実性は、未来の結果が完全に予測できないことを意味し、AIがその不確実性をどのように処理するかが、さまざまな技術的アプローチに影響を与える。
KLダイバージェンス(Kullback-Leibler Divergence)は、確率分布 \( P \) と \( Q \) の間の類似性を測る非対称な指標で、主に情報理論や機械学習において用いられるものとなる。制約として扱う場合、主に最適化問題や生成モデルでの応用が考えられている。
エピステミック不確実性(Epistemic Uncertainty)は、知識や情報の不足、または不完全性から生じる不確実性を指し、ある事象やシステムについての理解が不十分であるために発生し、その不確実性は、より多くの情報を取得したり、既存の知識を深めたりすることで減少させることができるものとなる。
アレアティック不確実性(Aleatory Uncertainty)とは、主に自然現象や確率的な変動に起因する不確実性を指すものとなる。この種類の不確実性は、本質的にランダムで制御できないものであり、確率的モデルを用いて表現されることが多い。これは例えば、気象条件やサイコロを振る際の出目などが該当する。
ベイズ推定は、確率論的なフレームワークに基づいた統計的推論の手法の一つであり、不確実性を取り扱う機械学習技術となる。ベイズ推定の目的は、データと事前知識(事前分布)を組み合わせて、未知のパラメータの確率分布を推定することとなる。ここでは、このベイズ推定に関する概要と応用事例および各種実装について述べている。
ベイジアンネットワークの推論は、ベイズの定理に基づいて事後分布を求める過程であり、主要な推論アルゴリズムにはいくつかの種類がある。以下に代表的なベイジアンネットワークの推論アルゴリズムについて述べる。
ベイジアンネットワークの前進推論(Forward Inference)は、既知の情報をもとに、ネットワーク内の変数やノードの事後分布を計算するための手法となる。ベイジアンネットワークは確率的グラフィカルモデルであり、変数間の依存関係を表現するために使用される。前進推論は、ネットワーク内の情報の伝播を通じて、目的の変数の事後分布を計算している。
ベイジアン多変量統計モデリングは、ベイジアン統計学の枠組みを使用して、複数の変数(多変量)を同時にモデル化する手法であり、この手法は、観測データに対する確率的な構造を捉え、不確実性を考慮することができるものとなる。多変量統計モデリングは、データの相関や共分散構造、異常値の検出などの問題に対処するために利用されている。
ディリクレ過程(Dirichlet Process, DP)は、無限次元の確率分布を扱うための強力な道具で、ベイズ非パラメトリックモデルの中心的な役割を果たしており、クラスタリングやトピックモデリングなどに応用されるものとなる。
- 階層的ディリクレ過程 (HDP)の概要とアルゴリズム及び実装例
階層的ディリクレ過程 (Hierarchical Dirichlet Process, HDP) は、無限混合モデルを扱うためのベイズ非パラメトリック手法の一つであり、特に、複数のグループにまたがるデータに共通のクラスタを持たせつつ、各グループに独自のクラスタ構造を許容する際に使用されるものとなる。
- 中国料理店過程 (Chinese Restaurant Process)の概要とアルゴリズム及び実装例
中国料理店過程 (Chinese Restaurant Process, CRP) とは、”ディリクレ過程(Dirichlet Process, DP)の概要とアルゴリズム及び実装例について“でも述べているディリクレ過程 (Dirichlet Process, DP) を直感的に説明するために用いられる確率モデルとなる。特にクラスタリング問題に頻繁に使われている。
- 棒切り分割プロセス(Stick-breaking Process)の概要とアルゴリズム及び実装例
棒切り分割プロセス (Stick-breaking Process) は、”ディリクレ過程(Dirichlet Process, DP)の概要とアルゴリズム及び実装例について“でも述べているディリクレ過程 (Dirichlet Process, DP) を直感的に理解するための代表的な手法で、長さ1の棒を無限に繰り返しランダムに分割して、無限次元の確率分布を生成するアプローチとなる。これは、ディリクレ過程の離散的な確率測度を構成するための視覚的かつ数学的に美しい方法となっている。
ディリクレ過程混合モデル(Dirichlet Process Mixture Model, DPMM)は、クラスタリングやクラスタ分析において非常に重要なモデルの一つであり、DPMMは、ベイジアン非パラメトリクスの枠組みで、クラスタ数を事前に決定する必要がなく、データから自動的にクラスタを推定することができる特徴がある。
マルコフ連鎖モンテカルロ法(Markov Chain Monte Carlo, MCMC)は、確率分布からのサンプリングや積分計算を行うための統計的手法となる。MCMCは、マルコフ連鎖(Markov Chain)とモンテカルロ法(Monte Carlo)の組み合わせとなる。ここでは、このMCMCに対して、様々なアルゴリズムと適用事例および実装例について述べている。
NUTS(No-U-Turn Sampler)は、”確率積分計算の為のMCMC法:メトロポリス法以外のアルゴリズム(HMC法)“でも述べているハミルトニアンモンテカルロ法(HMC)の一種であり、確率分布からのサンプリングを行うための効率的なアルゴリズムとなる。HMCは、物理学のハミルトニアン力学をベースにしており、マルコフ連鎖モンテカルロ法の一種で、NUTSは、HMCの手法を改良して、自動的に適切なステップサイズやサンプリング方向を選択することで、効率的なサンプリングを実現している。
トピックモデルは、大量のテキストデータからトピック(テーマやカテゴリ)を自動的に抽出するための統計的モデルとなる。ここでのテキストデータの例としては、ニュース記事、ブログ記事、ツイート、顧客レビューなどがある。トピックモデルは、データ内の単語の出現パターンを分析し、トピックの存在と各単語のトピックへの関連性を推定する原理となる。
ここではこのトピックモデルの概要と、主にpythonのライブラリを利用した様々な実装(ドキュメントからのトピックの抽出、ソーシャルメディアの分析、レコメンデーション、画像情報のトピック抽出、音楽情報からのトピックの抽出)について述べている。
変分法(Variational Methods)は、関数や確率分布の中で最適解を求めるために用いられ、機械学習や統計学などで広く使われる最適化手法の一つであり、特に、確率的生成モデルや変分自己符号化器(Variational Autoencoder, VAE)などの機械学習モデルにおいて重要な役割を果たしている手法となる。
変分ベイズ学習(Variational Bayesian Inference)は、ベイズ統計学における確率的モデリングの手法の一つであり、事後分布を解析的に求めることが難しい場合や計算コストが高い場合に利用されるものとなる。
ここでは、この変分ベイズ学習の様々なアルゴリズムの概要と、トピックモデル、ベイズ回帰、混合モデル、ベイズニューラルネットワークでのpythonの実装について述べている。
カルバック・ライブラー変分推定(Kullback-Leibler Variational Estimation)は、確率分布間の差異を評価し、それを最小化することで、データの確率モデルを近似的に推定する手法の一つであり、この手法は、ベイズ統計学や機械学習、情報理論の文脈で広く使用されている。主な用途は以下のようになる。
- ディリクレ分布の概要と関連アルゴリズム及び実装例について
ディリクレ分布(Dirichlet distribution)は、多変量確率分布の一種であり、主に確率変数の確率分布をモデリングするために使用されるものとなる。ディリクレ分布は、K個の非負実数からなるベクトル(多次元ベクトル)を生成する確率分布で、これをディリクレ分布と呼ぶ。
ソフトマックス関数(Softmax function)は、実数のベクトルを確率分布に変換するために使用される関数であり、通常、機械学習の分類問題において、モデルの出力を確率として解釈するために使われるものとなる。ソフトマックス関数は、入力された要素の指数関数を計算し、それを正規化して確率分布を得ることができる。
HMMは、確率的なモデルの一種であり、一連の観測データを生成するプロセスを表現するために使用され、特に、系列データや時系列データのモデリングに広く利用されているものとなる。HMMは「隠れた状態(hidden state)」と「観測結果(observation)」という2つの要素から構成され、隠れた状態は、直接は観測されず、系列データの背後にある潜在的な状態を表し、観測結果は、直接的に観測できるデータであり、隠れた状態から生成される。
ここでは、このHMMに関して、各種アルゴリズムと実用例およびpythonによる具体的な実装例について述べている。
画像認識システムは、コンピュータが画像を解析し、その中に含まれるオブジェクトや特徴を自動的に識別する技術となる。このシステムでは、画像処理、パターン認識、機械学習、ディープラーニングなどの様々な人工知能アルゴリズムと手法を組み合わせて実現されている。ここではこの画像認識システム構築のためのステップとそれらの具体的な実装について述べている。
画像情報処理において、前処理は、モデルの性能や収束速度に大きな影響を与え、画像データをモデルに適した形に変換する重要なステップとなる。以下に、画像情報処理のための前処理手法について述べる。
物体検出技術は、画像やビデオ内の特定の物体やオブジェクトを自動的に検出し、それらの位置を特定する技術となる。物体検出はコンピュータビジョンや画像処理の重要なアプリケーションであり、多くの実世界の問題に応用されている。ここでは、この物体検出技術に関する様々なアルゴリズムと実装例について述べている。
Haar Cascades(ハールカスケード)は、物体検出のための特徴ベースのアルゴリズムであり、Haar Cascadesは、特に顔検出などのコンピュータビジョンタスクに広く使用されているものとなる。ここでは、このHaar Cascadesの概要とアルゴリズム及び実装について述べている。
Histogram of Oriented Gradients(HOG)は、コンピュータビジョンと画像処理の分野で、物体検出や物体認識に使用される特徴量抽出手法の一つとなる。HOGは、画像内のエッジや勾配方向の情報をキャプチャし、これらの情報を元に物体の特徴を表現する原理となる。ここではこのHOGに関する概要と課題、様々なアルゴリズムと実装例について述べている。
カスケード分類器(Cascade Classifier)は、物体検出タスクに使用されるパターン認識アルゴリズムの一つとなる。カスケード分類器は、高速な物体検出を実現するために開発されており、特にHaar Cascadesという形式が広く知られて、主に顔検出などのタスクで使用されている。ここでは、このカスケード分類器の概要、アルゴリズム及び実装例について述べている。
IoU(Intersection over Union)は、物体検出や領域提案などのコンピュータビジョンのタスクで使用される評価指標の一つで、予測されたバウンディングボックス(bounding box)と真のバウンディングボックスの重なり具合を示す指標となる。
物体検出におけるアンカーボックスは、畳み込みニューラルネットワーク(CNN)ベースの物体検出アルゴリズムで広く使用される概念で、アンカーボックスは、画像内の複数の位置やスケールにおける物体の候補領域を表現するために使用されるものとなる。
Selective Searchは、コンピュータビジョンと物体検出の分野で使用される、物体検出のための候補領域提案手法の一つであり、物体検出は、画像中の物体の位置を特定するタスクで、これはコンピュータビジョンの重要なアプリケーションの一つとなる。Selective Searchは、物体検出モデルが物体が存在する可能性が高い領域を提案するのに役立てられている。
EdgeBoxes(エッジボックス)アルゴリズムは、物体検出のための候補領域提案手法の一つとなる。この手法は、画像中の潜在的な物体の位置を特定するために使用され、物体が存在する可能性が高い領域を効率的かつ高速に提案するものとなっている。
プロポーザルネットワークは、主にコンピュータビジョンや画像処理の分野で使用されるニューラルネットワークの一種で、特に物体検出や領域提案(object proposal)のタスクで利用されるものとなる。プロポーザルネットワークは、入力画像から興味のある領域(物体や物体が存在する領域)を提案するためのモデルになる。
Contrastive Predictive Coding(CPC)は、表現学習(representation learning)の手法の一つで、音声や画像などのデータから、意味的に重要な表現を学習するために利用されるものとなる。この手法は、教師なし学習の一形態であり、学習データ内での異なる観測を対比(contrast)することによって表現を学習している。
R-CNN(Region-based Convolutional Neural Networks)は、物体検出タスクにおいて深層学習を活用するアプローチの一つとなる。R-CNNは、物体が存在する領域を提案(プロポーズ)し、それらの領域を個別に畳み込みニューラルネットワーク(CNN)で処理し、物体のクラスと境界ボックスを予測する方法であり、R-CNNは、物体検出タスクにおいて非常に優れた性能を発揮している。ここではこのR-CNNの概要、アルゴリズム及び実装事例について述べている。
Faster R-CNN(Faster Region-based Convolutional Neural Networks)は、物体検出タスクにおいて高速で高精度な結果を提供する一連のディープラーニングモデルの一つであり、R-CNN(Region-based Convolutional Neural Networks)と呼ばれる以前のアーキテクチャの問題点を解決し、物体検出の分野で大きな進歩をもたらしたものとなる。ここでは、このFaster R-CNNの概要とアルゴリズム及び実装例について述べている。
YOLO(You Only Look Once)は、リアルタイム物体検出タスクのための深層学習ベースのアルゴリズムとなる。YOLOは、物体検出とクラス分類を同時に行うことができ、高速かつ高精度な結果を提供する。YOLOは、コンピュータビジョンと人工知能の分野で非常に人気のあるモデルの一つとなる。
SSD(Single Shot MultiBox Detector)は、物体検出タスクを行うためのディープラーニングベースのアルゴリズムの一つとなる。SSDは、物体検出モデルを高速化し、高精度な検出を実現するために設計されている。
Mask R-CNN(Mask Region-based Convolutional Neural Network)は、物体検出と物体セグメンテーション(インスタンスセグメンテーション)のためのディープラーニングベースのアーキテクチャであり、各物体の位置を境界ボックスで囲むだけでなく、物体内のピクセルレベルで物体をセグメント化する能力を持っており、物体検出とセグメンテーションを組み合わせた強力なモデルとなる。
EfficientDetは、物体検出タスクにおいて高い性能を持つコンピュータビジョンモデルの一つとなる。EfficientDetは、モデルの効率性と精度のバランスを取るために設計され、より少ない計算リソースで優れた性能を発揮する。
RetinaNetは、物体検出タスクにおいて優れた性能を発揮するディープラーニングベースのアーキテクチャで、物体の境界ボックスの位置を予測すると同時に、各物体クラスに属する確率を推定するものとなる。このアーキテクチャは、”SSD (Single Shot MultiBox Detector)の概要とアルゴリズム及び実装例について“でも述べているシングルショット物体検出(Single Shot Detector、SSD)として知られるアプローチに基づいているが、一般的なSSDよりも小さい物体や難しく見つけにくい物体の検出において優れた性能を発揮する。
アンカーボックス(Anchor Boxes)と高いIoU(Intersection over Union)の閾値は、画像認識の物体検出タスクにおいて重要な役割を果たす。以下に、これらの要素に関する調整と密な物体の検出について述べる。
EfficientNet(エフィシエントネット)は、軽量で効率的なディープラーニングモデルの一つであり、畳み込みニューラルネットワーク(CNN)のアーキテクチャとなる。EfficientNetは、2019年にTan and Leによって提案され、モデルのサイズと計算リソースを最適化しながら、高い精度を達成することを目指して設計されたものとなる。
LeNet-5(LeNet-5)は、ディープラーニングの分野において重要な歴史的なニューラルネットワークモデルの一つであり、”CNNの概要とアルゴリズム及び実装例について“でも述べている畳み込みニューラルネットワーク(CNN)のパイオニアであるユアン・ルカン(Yann Lecun)によって1998年に提案された手法となる。LeNet-5は、手書き数字認識タスクで非常に成功し、その後のCNNの発展に寄与している。
MobileNetは、コンピュータビジョン分野で広く使用されているディープラーニングモデルの一つであり、Googleが開発したモバイルデバイス向けに最適化された軽量で高効率な”CNNの概要とアルゴリズム及び実装例について“でも述べている畳み込みニューラルネットワーク(Convolutional Neural Network, CNN)アーキテクチャとなる。MobileNetは、画像分類、物体検出、セマンティックセグメンテーションなどのタスクに使用できるが、特にリソース制約のあるデバイスやアプリケーションで優れたパフォーマンスを提供している。
SqueezeNet(スクイーズネット)は、軽量でコンパクトなディープラーニングモデルの一つで、”CNNの概要とアルゴリズム及び実装例について“でも述べている畳み込みニューラルネットワーク(CNN)のアーキテクチャとなる。SqueezeNetは、畳み込みニューラルネットワークを小さなファイルサイズと低い演算量で実現することを目指して設計されており、主にリソース制約のある環境やデバイス向けに適している。
U-Netは、画像セグメンテーション(画像の各ピクセルを対応するクラスに割り当てるタスク)におけるディープラーニングアーキテクチャの一つであり、2015年に提案されたこのネットワークは、医療画像処理の分野で特に有用性が高く、セマンティックセグメンテーションにおいて良好な性能を発揮するものとなる。
音声認識システム(Speech Recognition System)は、人間が話す言葉をコンピューターが理解できる形式に変換する技術であり、音声入力を受け取り、それをテキスト情報に変換するシステムとなる。ここではこの音声認識システムの構築手順について述べるとともに、pythonを用いた具体的な実装について述べている。
音声認識の前処理は、音声データをモデルに入力可能な形式に変換し、学習や推論を効果的に行うためのステップで、以下のような前処理手法が必要となる。
- WaveNetの概要とアルゴリズム及び実装例
WaveNetは、音声生成のための深層学習モデルであり、DeepMindによって開発されたフレームワークとなる。WaveNetは、自然な音声を生成するためのニューラルネットワークアーキテクチャを提供し、このモデルは、畳み込みニューラルネットワーク(CNN)を使用して、音声波形をサンプル単位で直接モデリングしている。
異常検知技術(Anomaly Detection)は、データセットやシステムの中で異常な振る舞いやパターンを検出するための手法となる。異常検知では、通常のデータの振る舞いやパターンをモデリングし、それとの乖離を評価して異常を検出するしくみで、異常とは、予期しないデータの出現や異常な振る舞いを指し、正常データとの差異や外れ値として捉えるものとなる。異常検知は、教師あり学習や教師なし学習双方の手法で行われる。
ここでは異常検知技術の概要と適用事例および、統計的異常検知、教師あり異常検知、教師無し異常検知、深層学習ベースの異常検知についての実装について述べている。
変化検知技術(Change Detection)は、データやシステムの状態における変化や異常を検出するための手法となる。変化検知では、データやシステムの状態が変化したことを検出するため、学習期間(過去のデータ)と、テスト期間(現在のデータ)という2つの状態の比較を行う。しくみとしては、学習期間のデータを使用して正常な状態やパターンをモデリングし、テスト期間のデータと比較して異常や変化を検出するものとなる。
ここではこの変化検知技術の概要と適用事例、更に基準モデル、統計的変化検知、機械学習ベースの変化検知、シーケンスベースの変化検知での具体的な実装について述べる。
因果推論(Causal inference)は、ある出来事や現象が別の出来事や現象を引き起こす要因であるかどうかを推論するための方法論となる。因果探索(Causal exploration)は、因果関係を特定するためにデータを分析し、潜在的な因果関係の候補を探索するプロセスとなる。
ここではこの因果推論と因果探索に関して、様々な適用事例と時差総例について述べている。
強いAI(または汎用人工知能、AGI: Artificial General Intelligence)は、特定の問題領域に限定されない広範な知能を持つAIを指す。AGIは、人間のように知識を学び、理解し、さまざまな環境や状況で柔軟に対応できるAIを目指しており、単なるパターン認識や最適化を超え、「知的推論」や「意図的な行動選択」ができる能力が必要とされている。強いAIが人間と同等の知的能力を持つためには、因果推論の能力が不可欠であると言われている。
Causal Forestは、観測されたデータから因果効果を推定するための機械学習モデルであり、ランダムフォレストをベースにしており、因果推論に必要な条件に基づいて拡張されたものとなる。ここでは、このCausal Forestの概要と適用事例およびRとPythonによる実装について述べている。
Doubly Robust Learnersは、因果推論の文脈で使用される統計的手法の一つであり、観測データから因果効果を推定する際に、二つの推定手法を組み合わせることでよりロバストな結果を得ることを目指すものとなる。ここではこのDoubly Robust Learnersに関する概要とアルゴリズム、適用事例と Pythonによる実装について述べている。
Meta-Learnersを用いた因果推論は、機械学習モデルを用いて因果関係を特定し、推論するためのアプローチを改善する方法の一つであり、因果推論は、ある変数が別の変数に対して直接的な因果関係を持つかどうかを判断することを目指すが、これには従来の統計的方法だけでなく、機械学習を活用することでより高度な推論が可能となる。Meta-Learnersは、異なる因果推論タスクに対して迅速に適応する能力を持つモデルを構築するために使用され、これにより、以下のような問題を効率的に解決できるようになる。
ゲーム理論とは、競争や協力など、相互に影響を与えあう複数の意思決定者(プレーヤー)が存在する場合に、彼らの戦略とその結果を数学的にモデル化することで、最適な戦略を決定するための理論となる。これは主に経済学や社会科学、政治学などの分野で用いられている。
ゲーム理論のアルゴリズムとしては、ミニマックス法、モンテカルロ木探索、深層学習、強化学習等様々な手法が用いられている。ここでは、R、Python、Clojureでの実装例について述べる。
説明可能な機械学習(Explainable Machine Learning)は、機械学習モデルの予測や意思決定の結果を理解可能な形で説明する手法やアプローチのことを指す。実世界の多くのタスクでは、モデルの説明性が重要となることが多い。これは例えば、金融向けのソリューションでは、モデルがどの要素に基づいて信用スコアを判断しているのかを説明する必要があったり、医療診断向けのソリューションでは、患者に対する予測の根拠や理由を説明することが重要であることなどからもわかる。
ここでは、この説明可能な機械学習に対して、様々なアルゴリズムとpythonを用いた実装例について述べている。
劣モジュラ最適化(Submodular Optimization)は、組合せ最適化の一種であり、特定の性質を持つ関数である劣モジュラ関数を最大化または最小化する問題を解決する手法となる。ここでは、この劣モジュラ最適化に関して、様々なアルゴリズム、適用事例、及びそれらの実装例について述べている。
混合整数最適化は、数理最適化の一種であり、連続変数と整数変数を同時に扱う問題のことを指す。この分野は、さまざまな産業やビジネス領域で現実的な問題を解決する際によく用いられ、混合整数最適化の目標は、目的関数を最大化または最小化する際に、制約条件の下で最適な変数の値を見つけることとなる。ここでは、この混合整数最適化に関して、様々なアルゴリズムと実装について述べている。
粒子群最適化(Particle Swarm Optimization、PSO)は、鳥や魚の群れの行動をモデル化し、自然界の群れの動きに着想を得たもので、進化計算アルゴリズムの一種であり、複数の個体が群れを形成し、最適解を探索する手法となる。PSOは、局所解に陥りやすい遺伝的アルゴリズムよりも、より広範な探索空間を探索できることが特徴となる。また、他の進化計算アルゴリズムよりも計算時間が短く、高速に最適解を見つけることができることがある。PSOは、機械学習や最適化問題の解決に広く用いられており、多数の研究や実用例が報告されている。
ケースベース推論は、過去の問題解決の経験や事例を参照し、類似の問題に対して適切な解決策を見つける手法となる。ここでは、このケース推論技術の概要と課題及び様々な実装について述べている。
確率的最適化は、確率的な要素を含む最適化問題の解法を表し、機械学習での確率的最適化はモデルのパラメータを最適化する際にに広く使用されている手法となる。一般的な最適化問題では、目的関数を最小化または最大化するために、パラメータの最適な値を見つけることが目標であるのに対して、確率的最適化は、目的関数にデータの変動や観測誤差など、さまざまな要因によって引き起こされるノイズやランダム性が含まれる場合に特に有用となる。
確率的最適化では、最適解を見つけるためにランダムな要素や確率的なアルゴリズムが使用される。例えば、機械学習の分野では、ニューラルネットワークの重みやバイアスなどのパラメータを最適化するために確率的最適化手法が頻繁に使用される。代表的な手法であるSGD(Stochastic Gradient Descent)では、データセットのサンプルをランダムに選択し、そのサンプルに基づいてパラメータを更新することで最適化を行うことで、モデルはデータセット全体を使用することなく効率的に学習することができる。
マルチタスク学習(Multi-Task Learning)は、複数の関連するタスクを同時に学習する機械学習の手法となる。通常、個々のタスクは異なるデータセットや目的関数を持っているが、マルチタスク学習ではこれらのタスクを同時にモデルに組み込むことで、相互の関連性や共有できる情報を利用して互いに補完しあうことを目指している。
ここではこのマルチタスクに対して、共有パラメータモデル、モデルの蒸留、転移学習、多目的最適化等の手法の概要について述べ、自然言語処理、画像認識、音声認識、医療診断等の応用事例とpythonによる簡易な実装例について述べている。
スパースモデリングは、信号やデータの表現においてスパース性(疎な性質)を利用する手法となる。スパース性とは、データや信号において非ゼロの要素がごく一部に限られている性質を指す。スパースモデリングでは、スパース性を活用してデータを効率的に表現し、ノイズの除去、特徴選択、圧縮などのタスクを行うことが目的となる。
ここではこのスパースモデリングに関して、Lasso、コンプレッション推定、Ridge正則化、エラスティックネット、Fused Lasso、グループ正則化、メッセージ伝搬アルゴリズム、辞書学習等の各種アルゴリズムの概要と、画像処理、自然言語処理、推薦、シグナル処理、機械学習、信号処理、脳科学等の様々な適用事例に対する実装について述べている。
トレースノルム(または核ノルム)は、行列のノルムの一種であり、行列の特異値の和として定義されるものとなる。これは特に、行列の低ランク近似や行列の最小化問題において重要な役割を果たしている。
フロベニウスノルムは、行列のノルムの一種であり、行列の要素の2乗和の平方根として定義されるものとなる。これは、行列 \( A \) のフロベニウスノルム \( ||A||_F \) が以下の式で与えられることを意味する。
\[ ||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} \]
ここで、\( A = [a_{ij}] \) は \( m \times n \) 行列で、フロベニウスノルムは、行列をベクトルとみなした場合のユークリッドノルムに対応している。
アトミックノルム(Atomic norm)は、最適化や信号処理などの分野で使用されるノルムの一種であり、一般的に、アトミックノルムはベクトルや行列の構造的な特性を反映するために設計されたものとなる。
重複のあるグループ正則化(Overlapping Group Lasso)は、機械学習や統計モデリングにおいて、特徴選択やモデルの係数の推定に使用される正則化手法の一種であり、通常のグループ正則化とは異なり、特徴が複数のグループに同時に属することが許容される手法となる。ここではこの重複のあるグループ正則化の概要と様々な実装例について述べる。
バンディット問題(Bandit problem)は、強化学習の一種であり、意思決定を行うエージェントが未知の環境において、どの行動を選択するかを学習する問題となる。この問題は、複数の行動の中から最適な行動を選択するための手法を見つけることを目的としている。
ここではこのバンディット問題に関して、ε-グリーディ法、UCBアルゴリズム、トンプソンサンプリング、softmax 選択、置換則法、Exp3アルゴリズム等の主要なアルゴリズムの概要と実装および、適用事例としてオンライン広告配信、医薬品の創薬、株式投資、クリニカルトライアルの最適化等とそれらの実装手順について述べている。
マルチアームドバンディット問題(Multi-Armed Bandit Problem)は、意思決定の問題の一種で、複数の選択肢(アーム)の中から最も報酬の高い選択肢を見つける問題で、この問題は、リアルタイムの意思決定や探索と活用のトレードオフを扱うアプリケーションに用いられるものとなる。
カウントベースのマルチアームドバンディット問題(Count-Based Multi-Armed Bandit Problem)は、異なるアクション(アーム)から報酬を獲得するという状況で、各アームの報酬分布が未知であると仮定する問題であり、強化学習の一種で、主な目標は、アームの選択によって得られる報酬を最大化するような方策(政策)を見つけることとなる。
Contextual banditは、強化学習の一種であり、複数の選択肢の中から最適な選択をする問題を解決するための枠組みとなる。この問題は、現在の状況(コンテキスト)に基づいて最適な選択をする必要がある場合に適用されるものとなる。Contextual bandit問題は以下の要素から構成される。ここではこのContextual banditに関して様々なアルゴリズムとpythonによる実装例について述べている。
- EXP3 (Exponential-weight algorithm for Exploration and Exploitation)アルゴリズムの概要と実装例について
EXP3(Exponential-weight algorithm for Exploration and Exploitation)は、多腕バンディット問題(Multi-Armed Bandit Problem)におけるアルゴリズムの一つであり、複数の選択肢(アーム)からなるスロットマシンを操作し、各アームの報酬を最大化するという問題設定のアプローチとなる。EXP3はこのような状況で、探索(Exploration)と活用(Exploitation)のトレードオフをうまくバランスさせながら、最適なアームを見つけることを目指すものとなる。
シミュレーションは、現実世界のシステムやプロセスをモデル化し、それをコンピュータ上で仮想的に実行するものとなる。シミュレーションは、物理的な現象、経済モデル、交通フロー、気候パターンなど、さまざまな領域で使用され、モデルの定義、初期条件の設定、パラメータの変更、実行、結果の解析などのステップで構築することができる。シミュレーションと機械学習は、異なるアプローチとなるが、目的や役割によって様々な相互作用をすることがある。
ここではこのシミュレーションと機械学習の組み合わせの適応事例と各種実装について述べている。
有限要素法(Finite Element Method、FEM)は、物体や構造物の振る舞いや応力解析を数値的に解析するための手法であり、複雑な構造や物体に対する力や荷重の影響を詳細にモデル化し、それによって応力や変位などの物理的な振る舞いを計算することが可能とするものとなる。
有限体積法(Finite Volume Method、FVM)は、偏微分方程式を解くための数値解法の一つであり、物理的な領域を有限個のセルに分割し、各セル内で方程式を平均化して離散化することで、領域全体の挙動を近似的に表現するものとなる。
サンプルベースMPC(Sample-Based Model Predictive Control)は、モデル予測制御(MPC)の一種で、システムの未来の挙動を予測し、最適な制御入力を計算する手法であり、従来のMPCに比べて、非線形システムや高次元システムにも適用しやすく、リアルタイム性を確保しやすい点が特徴の手法となる。
リアルタイム制約修正(Real-Time Constraint Modification)は、リアルタイムシステムにおける制約条件を動的に調整・修正する技術や手法を指し、リアルタイムシステムは、処理や応答が特定の時間内に行われることが要求されるシステムであり、典型的には組み込みシステムや制御システム、通信システムなどで使用されるものとなる。
物理インフォームドニューラルネットワーク(PINNs)は、データ駆動型の機械学習アプローチと物理モデリングを組み合わせた手法であり、ニューラルネットワークを使用して連続体力学や流体力学などの物理現象をモデル化し、数値解法を使用して方程式を近似的に解くことができるものとなる。
物理シミュレーションにおけるGraph Networksの応用は、複雑な物理システムを効率的かつ高精度にモデル化するための強力な手法となる。
Graph Network-based Simulators(GNS)は、物理シミュレーションを行うための強力なツールで、グラフネットワークを用いて物理システムの動的挙動を予測するものとなる。GNSは、シミュレーションの精度と効率を向上させるために設計されており、複雑な相互作用を持つ多くの物理システムに適用することができる。
Interaction Networks(INs)は、物理シミュレーションや他の科学的応用に使用される、グラフ構造を持つデータ間の相互作用をモデル化するためのネットワークアーキテクチャとなる。INsは、物理法則やデータの相互作用をモデル化することができる。
- pythonとアルゴリズム
- pythonによる機械学習
- pythonによる統計モデリング
- pythonによる最適化手法
- Clojureでのstopword除去 Pythonでのストップワード除去
- GPy – Pythonを用いたガウス過程のフレームワーク
今回はPythonを用いたガウス過程のフレームワークについて述べる。これらのライブラリーはClojureからも利用することができるがそれらは別途述べる。Pythonのフレームワークとしては汎用のscikit-learnのフレームワークの中にあるものを利用するものと、専用のフレームワークGPyとがある。GPyの方が多機能であるため今回はGPyについて述べる。
機械学習の領域では、PythonやRのような豊富なライブラリーを持つ環境が利用されててほぼデファクトとなっているが、これに対して初期(2007年〜2017年頃)のClojureでは、CやPython、R等と繋げるしくみも開発されていたが、相手先のライブラリを自由に扱えるレベルではなく、最新のアルゴリズムを駆使することにハードルがあった。
これに対して近年(2018年〜)、libPython-cljのようなPython環境と相互に運用可能なフレームワークが現れたり、またJavaやCのライブラリを活用した数学的フレームワークfastmathや、深層学習のフレームワークCortex、Deep Diamond等が開発されたりすることで、機械学習へのアプローチが積極的に検討され、Clojureの機械学習のコミュニティとして有名なscicloj.ml等で活発に議論されるようになった。
コメント
[…] Clojureの特徴の一つとして関数型言語であるというものがある。これはpyhtonやjavascript等の通常の言語が手続きを書き並べていく言語であるのに対して、関数という機能ブロックで全てのプログラムを構成するというプログラミング言語の歴史の中では最新のトレンドに部類されるものとなる。 […]
[…] Pythonの場合はリスト(list)型として[]で囲んでカンマ(,)で区切ったデータや、タプル(tuple)型として()で囲んでカンマ(,)で区切ったデータ、辞書(dict)型として{}で囲んでキー値と代入値をコロン(:)で挟んでカンマ(,)で区切ったデータがある。(list型とtuple型の違いはimmutableかどうか) […]
[…] 「世界標準MIT教科書 Python言語によるプログラミングイントロダクション 第2版:データサイエンスとアプリケーション」より。Pyhtonについて述べる前に、プログラミングとコンピューターについて述べる。 […]
[…] pythonの開発環境としては様々な選択肢がある。全くプログラムを行っていなかったビギナー向けであればanacondaが多数のライブラリがプレインストールされている点や、JupyterやInteriJ等のIDEとの連携の容易さから有力な選択肢の一つにはなる。しかしながらanacondaは上述のように多数の付加ライブラリがプレインストールされている為に大量のメモリ(数GB)が必要であり、また近年(2020年4月より)パッケージレポジトリの使用の有料化(従業員の総数が200人異常の共通支配下にある事業体が対象)の話もあり、仕事の一貫として使う場合は別の選択肢も考えることも必要となる。 […]
[…] pythonではかなりシンプルな形となる。 […]
[…] glmnetは、重回帰、ロジスティック重回帰、ポアソン重回帰など、一般化線形モデル(GLM)に関するスパース推定を実装している。通常の重回帰に関してはscikit-learnを用いることでpythonを用いても実行することができる。R言語ではgroup lassoやgraphical lassoのためのパッケージも用意されている。 […]
[…] 例えば著者は iml パッケージを使っているが、pdp や DALEX もある。 Python では、partial dependence plots は scikit-learn に標準で実装されているし PDPBox […]
[…] サーバーサイドでの動的処理を抽象化するのが、サーバーサイドフレームワークとなる。サーバーサイドでは、PHP/Ruby/Python/Perl/Clojureのようなスクリプト言語で、Webアプリケーションの処理に必要な、HTML生成のためのテンプレート機能、データベースアクセスをする機能、安全性を高めるための入力チェック機能等様々な機能が抽象化されて準備されている。このフレームワークを使うことでユーザーはWebアプリケーションの仕組みを知らなくても、これらの抽象化された機能を使うだけでWebアプリケーションを開発できるようになる。 […]
[…] スペクトラムクラスタリングの実行は上記をコード化するか、python(sklean)やR、Clojure等の様々なプラットフォーム上のライブラリを利用して行うものとなる。 […]
[…] またClojureやpythonのラッパーもありそれらからの利用と可能となる。 […]
[…] pythonを使った実装はkerasのHPで紹介されており、ClojureではJavaの深層学習ライブラリであるDeepLearning4Jを使うことができる。これらの詳細は別の機会に紹介したい。 […]
[…] Javaにはこれら以外にも「パッケージ」「例外」「ガーベージコレクション」や後ほど述べる関数型言語等の工夫が取り入れられ日々進化している。近年はpythonが人気だが、実用システムの構築にはJavaベースでの構築がまだまだ重要だと思う。 […]
[…] Racket, Clojure,Haskell, Python, JavaScript, Scala, Ruby, OCaml, and PHPと多様で、刊行されている図書「The Reasoned […]
[…] でいう Rack 、 Python でいう […]
[…] R言語とは統計解析向けのプログラミング言語及び開発実行環境で、ニュージーランドのオークランド大学により1993年に作られた比較的歴史のあるツールである。特徴としては、ベクトルや行列等の扱いが簡易でしかも高速に処理できることから、数学的処理アルゴリズムの構築が容易でしかも処理が早いこと。また計算することが主目的の為、比較的シンプルなプログラミングが可能であることなどがある。それらの特徴により世界中の研究機関で利用され、数多くのライブラリ(パッケージ)が作成/公開されており、2021/02/01現在では、17029パッケージが登録されているようである。このライブラリ数はpythonのそれの半分以下となるが、統計解析向けに特化された言語であることを考えると十分な量があると言っても良いのではないかと思う。 […]
[…] 1.音声認識ツールCMU Sphinx(広く利用されている音声認識プログラム)Juicer(重み付き有限状態トランスデューサを利用した音声認識デコーダ)Julius(音声認識システムの開発・研究のためのオープンソースの高性能な汎用大語彙連続音声認識エンジン)2.言語モデルIRSTLM(言語モデルの学習・格納ツール)kenlm(メモリ効率とスピードを重視した言語モデル保持ツール)Kylm(重み付き有限状態トランスデューサーの出力や未知語の文字ベースモデル化などの機能が揃っている言語モデルツールキット。Javaで実装)RandLM(乱択データ構造であるBloom Filterを用いることで、膨大な言語モデルを少ないメモリで保持するツールキット)SRILM(効率的なn-gram言語モデルツールキット。様々な平滑化手法(Kneser-Neyなど)、クラス言語モデル、複数のモデルの補間等の機能が揃っている)3.言語処理ライブラリNLTK(Pythonで書かれた言語処理ライブラリ)OpenNLP(Javaで書かれた一般的な言語処理ライブラリ)参考記事Stanford CoreNLP(Stanford大学で作られたNLPツールを含めたライブラリ)4.読み推定KyTea(単語分割と読み推定の機能が揃っているテキスト解析ツールキット)mpaligner(発音推定システムを学習する時に必要となる文字・発音対応をアライメントするツール)Phonetisaurus(WFSTに基づく表記⇔発音変換ツールキット)5.句構造解析Berkeley Parser(PCFGの構文解析器。英語、アラビア語、中国語、フランス語、ドイツ語、ブルガリア語などのモデル付き)Charniak Parser(英語用のCFGパーザ)Egret(圧縮森やn-bestリストを出力できる確率的正則文法(PCFG)の構文解析器)EVALB(句構造解析結果の評価スクリプト)Stanford Parser(CFG解析と係り受け解析を同時に行う構文解析器。英語・中国語・アラビア語・フランス語・ドイツ語のモデルあり)6.形態素解析Chasen(HMMを用いた形態素解析器)JUMAN(日本語の形態素解析器。品詞等以外にも様々な意味情報を付与する)参考記事KyTea(分野適応可能で未知語にロバストな形態素解析器)MeCab(条件付き確率場(CRF)を用いた形態素解析エンジン)Sen(Javaで書かれた形態素解析システム)Sudachi(ワークスアプリケーションズによるエンジン、最近公開されたので辞書が新しく、高速化が特徴)7.有限状態モデルKyfd(重み付き有限状態トランスデューサ(WFST)で構築されたテキスト処理システムのためのデコーダ)OpenFST(重み付き有限状態トランスデューサ(WFST)の様々なアルゴリズムを実装したライブラリ。有限状態モデルを利用したシステムの構築に便利)8.機械翻訳アライメントBerkeley Aligner(教師ありと教師なしアライメントを両方実装した単語アライメントプログラム)GIZA++(IBMモデルを実装した標準的な単語アライメントツール)pialign(Inversion transduction grammar (ITG)に基づいたフレーズアライメントツール。精度を保ちながらコンパクトなモデルが学習できるのが特長)9.機械翻訳デコーダcdec(最近の木ベース・森ベース機械翻訳の研究成果を実装したデコーダ)Joshua(統語ベース翻訳のためのデコーダ)Moses(標準的な機械翻訳デコーダ。フレーズベースと木ベースの機械翻訳に対応)Travatar(統語情報を用いる翻訳のためのtree-to-stringデコーダ)10.機械翻訳評価METEOR(類義語、語幹正規化、並べ替え情報などを考慮したMETEOR評価尺度を計算するツール)multeval(複数の評価基準に基づく統計的有意性を考慮した機械翻訳の評価ツール)RIBES(機械翻訳結果の並べ換えの精度を評価するプログラム)11.機械学習AROW++(Adaptive Regularization of Weight Vectorsというノイズにロバストなオンライン学習器の実装)Classias(オンライン学習、バッチ学習に基づいた様々な分類器を実装したライブラリ。)CRF++(系列解析で用いられる条件付き確率場(CRF)のツールキット。素性テンプレートを簡単に指定できるので、さまざまな素性で実験をするのに便利)CRFsuite(高速な学習を実現している条件付き確率場(CRF)の実装)LIBLINEAR(線形SVMやロジスティック回帰などの分類器を実装したライブラリ。学習は非常に速い)LIBSVM(様々なオプションをサポートするSVM学習ツール)Mallet(自然言語処理のための機械学習ツールキット。隠れマルコフモデル(HMM)、最大エントロピーマルコフモデル(MEMM)、条件付確率場(CRF)などの機能がある。JAVAで実装)SVM-Light(効率的なSVMライブラリー)Weka(様々な学習アルゴリズムを実装した機械学習ライブラリ)12.係り受け解析CaboCha(Cascaded Chunkingに基づく日本語の係り受け解析器)KNP(日本語の係り受け解析と格解析器)参考記事MaltParser(Shift-Reduceに基づく係り受け解析器)MSTParser(最小極大木に基づく係り受け解析器) […]
[…] 比較としてpythonでの非同期処理のコードを示す。 […]
[…] 人工知能技術サマリー 機械学習技術サマリー トピックモデルサマリー オントロジー技術サマリー Clojureサマリー Pythonサマリー […]
[…] プログラミング言語Pyhtonに関する概要 | Deus Ex Machina より: 2021年10月24日 8:36 PM […]
[…] プログラミング言語Pyhtonに関する概要 | Deus Ex Machina より: 2021年11月14日 4:59 AM […]
[…] R言語とは統計解析向けのプログラミング言語及び開発実行環境で、ニュージーランドのオークランド大学により1993年に作られた比較的歴史のあるツールである。特徴としては、ベクトルや行列等の扱いが簡易でしかも高速に処理できることから、数学的処理アルゴリズムの構築が容易でしかも処理が早いこと。また計算することが主目的の為、比較的シンプルなプログラミングが可能であることなどがある。それらの特徴により世界中の研究機関で利用され、数多くのライブラリ(パッケージ)が作成/公開されており、2021/02/01現在では、17029パッケージが登録されているようである。このライブラリ数はpythonのそれの半分以下となるが、統計解析向けに特化された言語であることを考えると十分な量があると言っても良いのではないかと思う。 […]
[…] プログラミング言語Pyhtonに関する概要 | Deus Ex Machina より: 2021年10月11日 6:51 AM […]
[…] Clojureの特徴の一つとして関数型言語であるというものがある。これはpythonやjavascript等の通常の言語が手続きを書き並べていく言語であるのに対して、関数という機能ブロックで全てのプログラムを構成するというプログラミング言語の歴史の中では最新のトレンドに部類されるものとなる。 […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 自然言語処理 音声認識 推薦技術 SVM グラフデータ 一般的な機械学習 Python […]
[…] アルゴリズム 機械学習における数学 深層学習 音声認識技術 Python […]
[…] ての記事。python環境構築に関しては”Pythonと機械学習“を参照のこと。 […]
[…] 問題解決と思考法及び実験計画 関係データ学習 統計的因果推論/探索 python […]
[…] AI学会論文集を集めて デジタルトランスフォーメーション技術 Python […]
[…] AI学会論文集を集めて デジタルトランスフォーメーション技術 Python […]
[…] 統計的因果推論/探索 強化学習技術 バンディット問題 Clojure Python R言語 人工知能技術における数学 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 問題解決と思考法及び実験計画 関係データ学習 統計的因果推論/探索 python […]
[…] 自然言語処理 音声認識 スパースモデリング 強化学習 深層学習 Python 物理・数学 […]
[…] サポートベクトルマシン スパースモデリング 異常検知・変化検知技術 python 物理・数学 […]
[…] ベイズ推論による機械学習 ノンパラメトリックベイズとガウス過程 python 経済とビジネス 物理・数学 […]
[…] 深層学習技術 一般的な機械学習 R言語と機械学習 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 深層学習技術 トピックモデル マルコフ連鎖モンテカルロ法 python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 機械学習の領域では、PythonやRのような豊富なライブラリーを持つ環境が利用されててほぼデファクトとなっているが、これに対して初期(2007年〜2017年頃)のClojureでは、CやPython、R等と繋 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 時系列データ学習 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 時系列データ解析 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 時系列データ学習 […]
[…] thonの概要および環境設定に関しては”Pythonと機械学習“を参照のこと。 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] 確率的生成モデル 変分ベイズ学習 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python Clojure […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] サポートベクトルマシン スパースモデリング 異常検知・変化検知技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] サポートベクトルマシン スパースモデリング トピックモデル Python 自然言語技術 画像処理技術 音声認識技術 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] アルゴリズム 機械学習における数学 深層学習 音声認識技術 Python […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] ベイズ推論による機械学習 ノンパラメトリックベイズとガウス過程 python 経済とビジネス 物理・数学 […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] ソフトマックス関数の概要と関連アルゴリズム及び実装例について […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] サポートベクトルマシン スパースモデリング トピックモデル Python 自然言語技術 画像処理技術 音声認識技術 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] サポートベクトルマシン スパースモデリング トピックモデル Python 自然言語技術 画像処理技術 音声認識技術 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] プログラミング言語Pyhtonに関する概要 | Deus Ex Machina より: 2021年11月7日 4:12 AM […]
[…] プログラミング言語Pyhtonに関する概要 | Deus Ex Machina より: 2021年11月5日 4:28 AM […]
[…] プログラミング言語Pyhtonに関する概要 | Deus Ex Machina より: 2021年11月16日 3:03 PM […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] センサーデータ/IOT技術 バンディット問題 強化学習技術 推薦技術 python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] プログラミング言語Pyhtonに関する概要 | Deus Ex Machina より: 2021年10月24日 3:52 PM […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] AI学会論文集を集めて デジタルトランスフォーメーション技術 Python […]
[…] AI学会論文集を集めて デジタルトランスフォーメーション技術 Python グラフニューラルネットワーク […]
[…] 深層学習技術 トピックモデル マルコフ連鎖モンテカルロ法 python R言語 異常検知・変化検知技術 時系列データ解析 […]
[…] 知識情報処理 グラフデータアルゴリズム 関係データ学習 推薦技術 python […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python グラフニューラルネットワーク […]
[…] AI学会論文集を集めて デジタルトランスフォーメーション技術 Python グラフニューラルネットワーク […]
[…] AI学会論文集を集めて デジタルトランスフォーメーション技術 Python グラフニューラルネットワーク 説明できる機械学習技術 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] AI学会論文集を集めて デジタルトランスフォーメーション技術 Python グラフニューラルネットワーク […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] ICT技術 ストリームデータの処理と機械学習 ICTインフラ技術 Clojure Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python グラフニューラルネットワーク […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 自然言語処理 音声認識 推薦技術 SVM グラフデータ 一般的な機械学習 Python […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] AI学会論文集を集めて デジタルトランスフォーメーション技術 Python グラフニューラルネットワーク […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] アルゴリズム 機械学習における数学 深層学習 音声認識技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python グラフニューラルネットワーク […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] アルゴリズム 機械学習における数学 深層学習 音声認識技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python グラフニューラルネットワーク […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 問題解決と思考法及び実験計画 関係データ学習 統計的因果推論/探索 python 経済とビジネス 物理・数学 […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 問題解決と思考法及び実験計画 関係データ学習 統計的因果推論/探索 python 経済とビジネス 物理・数学 […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] 深層学習技術 トピックモデル マルコフ連鎖モンテカルロ法 python R言語 異常検知・変化検知技術 時系列データ解析 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 問題解決と思考法及び実験計画 関係データ学習 統計的因果推論/探索 python 経済とビジネス 物理・数学 […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 問題解決と思考法及び実験計画 関係データ学習 統計的因果推論/探索 python 経済とビジネス 物理・数学 […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] オンライン学習 深層学習技術 確率生成モデル 強化学習技術 python 経済とビジネス […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] 関係データ学習 推薦技術 異常検知・変化検知技術 時系列データ解析 python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 深層学習技術 トピックモデル マルコフ連鎖モンテカルロ法 python R言語 異常検知・変化検知技術 時系列データ解析 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] アルゴリズム 機械学習における数学 深層学習 音声認識技術 Python […]
[…] 自然言語処理 音声認識 推薦技術 SVM グラフデータ 一般的な機械学習 Python […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] 深層学習技術 トピックモデル マルコフ連鎖モンテカルロ法 python R言語 異常検知・変化検知技術 時系列データ解析 […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python 物理・数学 […]
[…] 画像処理技術 強化学習技術 確率的生成モデル 深層学習技術 Python […]
[…] ベイズ推論による機械学習 ノンパラメトリックベイズとガウス過程 python 経済とビジネス 物理・数学 […]
[…] 2025.03.27 2023.06.30 機械学習技術 自然言語技術 画像情報処理 推薦技術 python 人工知能技術 デジタルトランスフォーメーション技術 […]
[…] アルゴリズムとデータ構造 一般的な機械学習 Python […]